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Abstract

Liquidity traps

A security’s liquidity properties have been studied in terms mean and variance—liquidity

level and liquidity risk, respectively. This paper explores tail events—liquidity disaster risk.

The idea is that liquidity might not be an issue for investors in normal market conditions.

But, it becomes a first-order concern if the security is ‘trapped’ in an illiquid state, in

particular if this state is persistent so that waiting a day will not restore liquidity. A Markov

regime-switching model is used to identify liquidity traps empirically. These are defined as

the security being stuck in an illiquid regime for at least a week. The model is estimated

for an unbalanced sample of 2147 stocks from 1963 through 2008. Standard Fama-MacBeth

regressions show that a one standard deviation increase in the probability of a liquidity trap

increases annual returns by 1.1%. And, this premium has increased over time.



1 Introduction

Standard asset pricing assumes frictionless markets where every security can be traded at

no cost at all times, i.e., markets are perfectly liquid. But, a large and expanding literature

relaxes the zero cost assumption in a variety of ways and empirical evidence shows that

liquidity frictions are a priced characteristic of a security. Amihud, Mendelson, and Pedersen

(2005) reviews the literature and organizes it into essentially studies on liquidity level or

liquidity risk.

A stock’s average liquidity level matters for required returns as investors seek com-

pensation for expected trading cost. Empirical evidence on the cross-sectional relationship is

in numerous studies, including Amihud and Mendelson (1986), Brennan and Subrahmanyam

(1996), Brennan, Chordia, and Subrahmanyam (1998). Over time, both liquidity level and

the premium required per unit of liquidity level have declined as evidenced by Amihud

(2002), Jones (2005), and Ben-Rephael, Kadan, and Wohl (2009).

Risk-averse investors might also require compensation for stochastic liquidity which

makes liquidity risk a priced factor. This channel has recently been developed and studied

in, among others, Pastor and Stambaugh (2003) who show that marketwide liquidity as

a state variable explains returns with a differential of 7.5% annually across low and high

liquidity beta stocks. Acharya and Pedersen (2005) propose CAPM for an asset’s expected

return gross of transaction cost. They find that a stock’s liquidity covariation with market

liquidity and with market return should matter for required returns in addition to the ‘Pastor-

Stambaugh’ covariation of a stock’s return with market liquidity. Empirically, they find that

a stock’s liquidity covariation with market returns is, among the three, the dominant part

of the aggregate liquidity risk premium. They also report that the aggregate liquidity risk

premium is smaller than the liquidity level premium in the cross-section of stocks.

Has the level premium decline and the relatively ‘small’ risk premium made liquidity

unimportant for asset pricing? This paper explores a new dimension of liquidity inspired

by the disaster risk literature, e.g., Rietz (1988) and Barro (2006). Investors might care
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little about liquidity in normal market conditions, but high transaction cost might become

a first order concern if the stock hits a ‘disaster’ liquidity state. An example is a self-

fulfilling liquidity dry-up if all believe others will not show up for trade or, in other words, a

negative manifestation of the liquidity externality (see, e.g., Pagano (1989)). Such dry-up is

particularly painful if this state is persistent so that waiting a day will not restore liquidity.

We refer to such event as stocks hitting a liquidity trap.

To test whether liquidity traps are priced requires a measure that recognizes (i) the

frequency of hitting an illiquid state and (ii) the duration of that state. Liquidity traps hurt

only if both of these are large. That is, securities that hit illiquid states frequently but revert

in a day or securities that stay for a prolonged period in an illiquid state but almost never

hit these state are not painful for an investor. We operationalize this idea by estimating

a Markov regime-switching model where the transition probability matrix identifies these

two dimensions. A liquidity trap is then defined as the (unconditional) probability that one

finds the security in the illiquid regime for more than a week. This is essentially a ‘product’

of frequency and duration, which captures the idea that both need to be large for liquidity

traps to hurt.

But, does this idiosyncratic liquidity trap probability not wash in the large universe

of stocks? Not necessarily for the same reasons that idiosyncratic volatility has been docu-

mented to be priced. If all agents are permanently in the market and are unconstrained in

their holdings, idiosyncratic price changes diversify. If, instead, agents are not always present

but arrive nonsynchronously an intermediary matches trading needs but requires compen-

sation for temporarily bearing inventory price risk (e.g., Grossman and Miller (1988), Hen-

dershott and Menkveld (2010)). Or, if some agents are constrained then the nonconstrained

agents need compensation for a ‘suboptimal’ portfolio (e.g., Malkiel and Xu (2005)).

The Markov regime-switching model is estimated for common stocks listed on NYSE

or AMEX in the period from 1963 to 2008. For each stock, each day, the standard Amihud

ILLIQ measure is calculated (see Amihud (2002)). The frequency of the illiquid regime is,

on average, 0.21. The average probability of staying another day in the illiquid regime is
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0.45. On average, the implied liquidity trap probability—being stuck in the illiquid regime

for at least five days—is 0.06.

The hypothesized relationship between a stock’s liquidity trap probability and its

required return is tested in two conventional ways: portfolio sorts and Fama-MacBeth regres-

sions. The portfolio sort analysis reveals that a trading strategy that is long in high liquidity

trap probability stocks and short in low liquidity trap probability stocks yields a significant

average annual excess return of approximately 3.36%. To explore whether this positive re-

turn is only due to one of the two factors of the liquidity trap probability (i.e., frequency or

duration) or just captures the (unconditional) average liquidity level, we double-sort and find

that, still, the return differential across low and high liquidity trap probability stocks remains

significantly positive. Fama-MacBeth regressions enable us to also control for the standard

Fama-French factors. Liquidity trap probability remains a significant explanatory factor for

returns. A one standard deviation increase in liquidity trap probability increases required

returns by 1.1% annually. These regressions are repeated for the two equal length subpe-

riods (1964 through 1985 and 1986 through 2008) and results indicate that liquidity trap

probability has become more important for required returns over time whereas, consistent

with earlier literature, liquidity level has become less important.

As a robustness check, we redo all analysis based on modelfree nonparametric proxies

for frequency and duration calculated directly from the raw data. Duration is measured as

the average time a stock is illiquid. Frequency is measured as the fraction of days that a

stock is illiquid. Redoing the required return analyses based on these noisy proxies shows

that our main finding that liquidity trap probability matters for required returns is robust.

The remainder of the paper is organized as follows. Section 2 introduces the Markov

regime switching model to identify liquidity traps. Section 3 describes the data and presents

descriptive statistics on the liquidity trap estimates. Section 4 tests the hypothesized relation

between a stock’s liquidity trap probability and its return. Section 5 presents a robustness

analysis. Section 6 concludes.
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2 Liquidity trap measurement

This section presents the estimation method of the liquidity trap probability. We model the

illiquidity level of stock i by a first-order autoregressive process with different intercepts,

same autoregressive coefficients, difference variances of error terms in two different regimes:

illiqi
d =





µi
0 + φiilliqi

d−1 + εi
d, if si

d = 0,

µi
1 + φiilliqi

d−1 + εi
d, if si

d = 1,
(1)

where illiqi
d is the illiquidity level of stock i on day d. si

d denotes the regime of stock i on

day d. εi
d ∼ N(0, σsi

d
) in regime si

d. We denote sd = 0 as the liquid regime and sd = 1 as the

illiquid regime. Moreover, si
d follows a first order Markov chain with the following transition

matrix:

Pr(si
d = 0|si

d−1 = 0) = pi
00 (2)

Pr(si
d = 0|si

d−1 = 1) = pi
01 (3)

Pr(si
d = 1|si

d−1 = 0) = pi
10 (4)

Pr(si
d = 1|si

d−1 = 1) = pi
11 (5)

We propose to measure the persistence of the illiquid regime by the probability that

a stock stays in the illiquid regime for five subsequent days given that it is in the illiquid

regime on previous day. Thus the persistence of the illiquid regime is calculated as

p5
11 =

(
Pr(si

d = 1|si
d−1 = 1)

)5

We measure the frequency of the illiquid regime by the unconditional probability that a

4



stock is in the illiquid regime as follows

p1 =
1− pi

00

2− pi
00 − pi

11

Next, we define the liquidity trap probability, liq trap probi, as the probability that

stock i is in the illiquid regime for five subsequent days. Therefore, it is the interaction of

p5
11 and p1:

liq trap probi = p5
11 × p1 =

(pi
11)

5(1− pi
00)

2− pi
00 − pi

11

(6)

In order to assure sufficient observations for the estimation, we estimate the above

Markov regime-switching model for each stock in each year. The problem of this stock-by-

stock analysis is that µi
0 and µi

1 differ across stocks. To achieve comparability across stocks,

we need to set µi
1 = µ1 for all stocks in the sample. We compute µ1 by pooling illiqi

d of all

stocks together and set the upper 20% percentile as the illiquidity level in the illiquid regime,

µ1. To estimate model parameters, we evaluate the likelihood function of the Markov regime

switching model using the Hamilton filter (see details in Appendix).

3 Data: summary statistics and liquidity trap esti-

mates

Daily and monthly data of stock prices, returns, volume, shares outstanding, and dividend

are obtained from CRSP, with a sample period from December 31, 1962, through December

31, 2008. Following Chordia, Roll, and Subramanyam (2000) and Kamara, Lou, and Sadka

(2008), we utilize only common stocks (CRSP share code 10 and 11) listed on NYSE/AMEX

(CRSP exchange code 1 and 2). Moreover, we obtain the daily and monthly risk-free rate
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and the daily Fama and French three factors from Kenneth French at Dartmouth College.

We use the Amihud (2002) measure as our daily illiquidity measure. Compared with

other measures of illiquidity, such as the bid-ask spread or the price impact, the Amihud

measure only requires daily data and thus enable us study a much longer time period.

Moreover, Hasbrouck (2006) and Korajczyk and Sadka (2008) have shown that the Amihud

measure is highly correlated with many other measures of illiquidity, suggesting that it is a

reliable measure of illiquidity. Specifically, for each stock i and day d, the Amihud illiquidity

measure is given by:

illiqi
d =

|ri
d|

dvolid

where ri
d is the daily return of stock i on day d. dvolid is the daily dollar volume of stock i

on day d. Since the focus of this paper is on liquidity traps, which are in general extreme

situations, we do not follow the existing filtering procedure1. First, illiqi
d is calculated for

each stock and each day. If ri
d is zero, then illiqi

d equals zero too. If dvolid is zero, then illiqi
d

is labeled as a non-observed observation, the same as the situation of a non-trading day.

Second, we winsorize illiq of all stocks in a given year by 1% and 99% percentile. Finally, we

retain a stock in a given year only if it has at least 100 non-missing illiqi
d value and the stock

has a yearly average price between $2 and $10002. In this way, we preserve the information

that is contained in the extreme illiq and meanwhile obtain relatively reliable data.

[insert Table 1]

Table 1 presents overall, between, and within summary statistics for NYSE/AMEX

firms over the sample period from December 31, 1962 through December 31, 2008. There are

between 1123 and 2147 stocks in our sample. The mean value of the Amihud ILLIQ measure

1For example, Chordia, Roll, and Subramanyam (2000), Amihud (2002) and Kamara, Lou, and Sadka
(2008) have applied similar filters. In specific, Kamara, Lou, and Sadka (2008) apply the filtering as follows:
First, illiqi

d is defined only for positive values of dvolid, and non-missing non-zero values of ri
d. Second, for a

daily observation to be included in the sample, the stocks price at the end of the previous trading day has
to be at least $2. Third, firm-days outliers with illiqi

d in the lowest and highest 1% percentiles of the sample
are discarded after applying the first two filters. Finally, a stock is retained in a given year only if it has at
least 200 valid observations

2On average, about 5% of total stocks are removed due to this criteria.
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is 0.41 with a overall standard deviation of 1.06. Moreover, there are considerable variations

in illiq, both in the cross-section (the between standard deviation is 0.74) and over time (the

within standard deviation is 0.76). In addition to illiq, there are several additional variables

used in the analysis: r100 is the return during the last 100 days of each year; r100yr is

the return between the beginning of the year and the 100 days before its end; sdret is the

standard deviation of the daily return; divyld is the dividend yield calculated as the sum of

the dividends during one year divided by the end-of-year price. Following Amihud (2002),

we use in the cross-sectional regression the mean-adjusted value of illiq:

illiqmai
y =

illiqi
y

1/Ny

∑Ny

n=1 illiqi
y

where illiqi
y is the illiq of stock i in year y and Nyis the number of stocks in year y.

[insert Table 2]

Table 2 presents overall, between, and within summary statistics for the yearly esti-

mates of the Markov regime switching model described in section 2. The average percentage

that the MLE gets convergence is 97%. The estimated p00 is 0.89 on average, implying that

there is 89% probability that a stock will stay in the liquid regime given that it is in the

liquid regime on previous day. The mean value of p11 is 0.45, smaller than p00. Thus, if a

stock is in the illiquid regime today, the probability that it remains in the illiquid regime

tomorrow is 45%. We restrict µ1 to be equal across stocks, and set it as the upper 20%

percentile of the total illiq. The mean value of µ1 is 0.59, and it is larger than the estimated

µ0. This is consistent with our setting that s = 1 is the illiquid regime. liq trp prob, the

multiplication of p5
11 and p1, has a mean value of 6%. Therefore, on average there is 6%

probability that a stock is stuck in a liquidity trap.

[insert Table 3]

Table 3 presents the between, and within correlation of the estimated coefficients
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of the Markov regime switching model. The between and within correlation between p5
11

and p1 are 0.58 and 0.65 respectively, both significant at 95% level. The positive correlation

between p5
11 and p1 is plausible: it is more likely that a stock remains in the illiquid regime if

it enters the illiquid regime more often, and vice versa. In addition, liq trp prob has positive

correlation with its two factors by definition.

4 The pricing of the liquidity trap probability

In this section we investigate whether our model-based measure of liquidity traps, the liq-

uidity trap probability, is priced in the cross-section. We first implement portfolio sorting

approach to examine the relationship between the liquidity trap probability and stock aver-

age returns (see, for example, Fu (2008) and Ang, Chen, and Xing (2006)). Then we move

on to Fama-MacBeth regressions which enable us regress cross-sectional returns directly on

the liquidity trap probability and meanwhile control for other firm characteristics and risk

factors.

Portfolio sorting analysis Compared to the regression approach, portfolio

sorting is interesting because it produces easy-to-interpret returns on a feasible investment

strategy. If individual stocks with high liquidity trap probability have higher returns than

stocks with low liquidity trap probability, then a zero-investment portfolio that is long in

high liq trap prob stocks and short in low liq trap prob stocks should earn a positive return.

[insert Table 4]

First, the single-sorting portfolio analysis is conducted. In each month we sort

stocks into five quintiles based on their liq trap prob in the previous year. These portfolios

are rebalanced monthly and are equal weighted. Table 4 presents the average of monthly

excess returns (relative to the risk-free rate) and robust Newey-West (1987) t-statistics. The

first two columns report portfolio excess returns over the entire sample period, from January
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1964 to December 2008, in total 540 months. The portfolio returns are generally higher for

portfolios with higher values of liq trap prob. The average monthly excess return is 0.91%

for the portfolio with highest liq trap prob, whereas the portfolio with lowest liq trap prob

has 0.62% return. The average monthly excess return for a zero-investment portfolio is 0.28%

(about 3.36% per year), which is both economically and statistically significant. The same

analysis is also conducted for two subperiods. For the first 264 months (from year 1964 to

1985), the return difference across liq trap prob quintiles is positive, but not statistically

significant. For the second subperiod (in total 276 months from year 1986 to 2008), there is

a significantly positive return spread, approximately 4.2% per year, across the two extreme

liq trap prob portfolios.

[insert Table 5]

In the next step, we apply the double-sorting portfolio analysis which allows us to

check the robustness of above results controlling for p5
11, p1 and illiq separately. As we have

shown in section 2, our measure of liquidity traps, liq trap prob, is the interaction of two

variables: the persistence of the illiquid regime which is measured by p5
11 and the frequency

of the illiquid regime which is measured by p1. Obviously the single-sorting portfolio analysis

above does not exclude the possibility that the positive return spread across liq trap prob

portfolios is due to only one of the two factors of liq trap prob. To explore this, we then

follow the approach suggested by Ang, Chen, and Xing (2006). In Panel A of Table 5, we

first sort stocks into five quintiles based on their p5
11 in the previous year. Then, within each

quintile, we sort stocks into five quintiles based on their previous year liq trap prob. These

portfolios are rebalanced monthly and are equal weighted. After forming the 5 × 5 p5
11 and

liq trap prob portfolios, we average the return of each liq trap prob quintile over the five

p5
11 portfolios. In this way these liq trap prob quintiles control for differences in p5

11. Over

the entire sample period, controlling for p5
11 reduces the magnitude of the return difference

from 0.28% in Table 4 to 0.19% per month. However, we still observe the increasing pattern

of returns from the low liq trap prob portfolio to the high liq trap prob portfolio and the
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5− 1 difference in average returns is significantly positive. Moreover, we find positive return

spreads for both subperiods, but only for the second subperiod it is statistically significant.

Panel B and Panel C of Table 5 present the excess return of double-sorted portfolios

controlled for p1 and illiq respectively. Although the difference in excess returns between

the highest and lowest liq trap prob portfolios are smaller after accounting for the difference

in p1, they are still significant over the entire sample period and in the second subperiod.

In addition, Amihud (2002) find evidence that stocks with high illiquidity level, measured

by illiq, have high average returns. In order to assure that the spread in average returns on

liq trap prob portfolios is not due to illiquidity level, we repeat the analysis to control for illiq

in Panel C of Table 5. The excess return increases monotonically within the liq trap prob

quintiles. The difference in excess returns between the two extreme liq trap prob quintiles

is positive and significant at 95% level for all months, and months over 1986 to 2008. Again,

the return spread for the second subperiod reaches 0.81% per month (approximately 9.72%

per year), indicating also economical significance.

Fama-MacBeth regressions The evidence from the portfolio-sorting analysis

suggests a positive relation between the liquidity trap probability and average stock returns.

However, it does not account for other well-known determinants of expected returns and

therefore could possibly introduce biases in the inference. To address this issue, we next

examine the relation between the liquidity trap probability and stock returns by cross-

sectional Fama-MacBeth regressions. The asset-pricing model is of the form:

E(ri) = γ + λ′βi + δ′Zi (7)

where E(ri) denotes the expected return of stock i. βi is a vector of factor loadings of

stock i relative to several different risk factors. λ is a vector of risk premiums. Zi is a

set of firm characteristics of stock i and δ is a vector of characteristic premiums. One

important firm characteristic considered in this paper is the liquidity trap probability (see

section 2), liq trap prob. The coefficients of Equation (7) are estimated for each month,
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m = 1, 2, . . . , M , in the cross-sectional regression:

ri,m,y = γm + λ′mβi,y + δ′mZi,y−1 + εi,m,y (8)

where ri,m,y denotes the monthly excess return (relative to the risk-free rate) of stock i in

month m of year y. βi,y is a vector of K factor loadings of stock i in year y. λm is a vector

of risk premiums in month m. δm is a vector of premiums of firm characteristics. Zi,y−1 is

a vector of L firm characteristics of stock i in year y − 1. Among them, the variables of

interest are the liquidity trap probability (liq trap prob), the probability that a stock is in

the illiquid regime for 5 days given that it is in the illiquid regime in the last period (p5
11),

and the stationary probability that a stock is in the illiquid regime (p1).

Since factor loadings are unobservable, they are pre-estimated through a time-series

regression:

ri,d,y = ai,y + βMKT
i,y MKTd,y + βSMB

i,y SMBd,y + βHML
i,y HMLd,y + εi,d,y (9)

This is the commonly used Fama-French three-factor model, where ri,d,y is the daily return

of stock i on day d in year y. MKTd,y is the daily excess market return in year y. SMBd,y

and HMLd,y are the daily excess return of small caps over big caps and of value stocks over

growth stocks in year y.

The final estimate, δ̂ and its variance are given by:

δ̂ =
1

M

M∑
m=1

δ̂m (10)

V ar(δ̂) =
1

M(M − 1)

M∑
m=1

(δ̂m − δ̂)2 (11)

where M is the total number of months in the sample. Similarly, λ̂ and its variance are given
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by:

λ̂ =
1

M

M∑
m=1

λ̂m (12)

V ar(λ̂) =
1

M(M − 1)

M∑
m=1

(λ̂m − λ̂)2 (13)

[insert Table 6]

Table 6 presents the results of Fama-MacBeth two-step regressions. In the first

step, factor loadings are estimated for each stock each year via OLS regression (9). Then

in the second step, we apply the cross-sectional regression (8) in each month via OLS.

The first four models are estimated over the entire sample period. Thus, we calculate the

average of the 540 estimated coefficients, and also present t-statistics against the null hy-

pothesis that the average is zero. Model (1) examines the pricing of the liquidity trap

probability after control for the illiquidity level and Fama-French three risk factors. The

coefficient of liq trap prob is 7.46, significant at 95% level. It implies that an increase of

one standard deviation in liq trap prob (0.12; see Table 2) would increase monthly returns

by 7.46× 10−3 × 0.12 = 0.09%. It is approximately 1.1% on an annual basis. The Amihud

ILLIQ measure also has a significantly positive coefficient of 1.60, implying that one stan-

dard deviation in illiqma would increase yearly returns by approximately 3%. As we can

see, liquidity traps capture the firm characteristic that is not reflected in the illiquidity level,

and it is priced both statistically and economically significant. Model (2) and (3) include p5
11

and p1 separately in the cross-sectional regressions. Both of them have significantly positive

coefficients. Furthermore, when they are both included in model (4), we still find signifi-

cantly positive coefficients for them. We have to note that these two variables have relatively

high correlation (between correlation is 0.58; see Table 3), thus there exists potential mul-

ticollinearity problem. Still, it suggests the independent explanatory power for p5
11 and p1

in the cross-sectional returns. The same analysis is employed for two subperiods: year 1964

to 1985 and year 1986 to 2008. As before, we report the average of monthly coefficients
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over the relevant time periods. The coefficients of liq trap prob and its two factors are not

significantly different from zero in the first subperiod. By contrast, liq trap prob has a coef-

ficient of 11.77 with a t-statistic of 3.97 in the second subperiod. Moreover, the coefficients

of liq trap prob, p5
11 and p1 are significantly larger in the second subperiod than in the first

subperiod (e.g. p-value of test H0( δ(liq trap prob, 1964-1985) = δ(liq trap prob, 1986-2008)

) is 0.02). The situation is different for the illiquidity measure illiqma. The effects of illiqma

on returns become considerably smaller in the second subperiod. Specifically, an increase

of one standard deviation in liq trap prob would increase yearly return by 1.7% whereas

one standard deviation change in illiqma would result in a change in yearly return of 2.0%.

Moreover, p5
11 and p1 both have significant coefficients in either the separate or joint tests.

This is consistent with the finding of Ben-Rephael, Kadan, and Wohl (2009), suggesting that

the liquidity premium declines over time. Our results provide evidence that the liquidity

trap probability becomes more relevant over time whereas the effects of the illiquidity level

declines.

[insert Table 7]

In Table 7 we add other well-known firm characteristics in the cross-sectional re-

gressions. r100 and r100yr are two variables that measure past stock returns. lnsize is the

logarithm of market capitalization, which measures the size of a firm. sdret reflects the total

risk of a stock. And divyld is the dividend yield. The results of these control variables are

consistent with theories and previous studies. Past returns that reflect the momentum of

a stock has a positive effect on stock returns. Small firms have a higher premium. Stocks

with higher volatility have lower require returns, which is consistent with the tax trading

option theory of Constantinides and Scholes (1980). Dividend yield has a coefficient that is

not significantly different from zero. The variables of interest, liq trap prob, p5
11 and p1, have

similar results as the previous table. liq trap prob have significantly positive coefficients over

the entire sample period and also over the two subperiods. The effects of liq trap prob on

stock returns are significantly higher during 1986 and 2008 than in the year 1964 to 1985 (the

coefficient is 13.52 in the 2nd subperiod versus 4.80 in the 1st subperiod, and p-value of test
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the difference is 0.03). Moreover, both p5
11 and p1 have significantly positive coefficients over

all months, 1964-1985, and 1986-2008 when they are separately included in the regressions.

However, in the joint test, p5
11 remains to be significant at 95% level whereas p1 turns to be

insignificant from zero. This implies that p5
11, which reflects the persistence of the illiquid

regime, has a dominant effects on returns. Finally, a down trend has been found for illiqma

coefficients, 0.74 in the second subperiod versus 1.88 in the first subperiod.

Overall, the portfolio sorting analysis and Fama-MacBeth cross-sectional regressions

show consistent evidence that the liquidity trap probability is positively priced in the cross-

section. The premium of the liquidity trap probability is economically and statistically

significant. Both factors of the liquidity trap probability, p5
11 and p1, contribute to the

premium. Moreover, the liquidity trap probability becomes more relevant in explaining

cross-sectional returns over time whereas the effects of the illiquidity level declines.

5 Robustness check

This section explores two robustness tests over the pricing of liquidity traps. First, we

propose an alternative measure of liquidity traps and examine whether it provides consistent

results as liquidity trap probability. Second, we investigate whether the well-known January

effect has any impact on our findings.

5.1 Alternative measure of liquidity traps

So far, the results over the pricing of liquidity traps are all based on the measure that is

derived from the Markov regime switching model. Since it is a model-based measure, it could

be subject to some problems, such as model misspecification or estimation errors. Therefore,

here we propose an alternative measure of liquidity traps, which is calculated directly from

raw data without any model specification.
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To start, we still need to define two liquidity regimes: an illiquid regime and a liquid

regime. We pool illiqi
d of all stocks in year y and set the upper 20% percentile as the cutoff

level for the illiquid regime in year y. A stock i is in the illiquid (liquid) regime on day d if its

illiquidity level illiqi
d is higher (lower) than the cutoff level. Then we proxy the persistence of

the illiquid regime by the average duration that a stock is in the illiquid regime in each year,

duration illiq. The frequency of the illiquid regime is then measured by the percentage of

the days that a stock is in the illiquid regime over total number of trading days in a year,

freq illiq. Correspondingly, the interaction of these two variables is the measure of liquidity

traps, denoted by duration illiq × freq illiq. For example, a stock is in the illiquid regime

twice in a year, once for 5 days and once for 15 days, and this stock has 200 trading days in

total. In this case, duration illiq equals to 10 (= 5+15
2

) and freq illiq equals to 0.1 (= 5+15
200

),

and duration illiq × freq illiq equals to 1 (= 10× 0.1).

[insert Table 8]

The overall, between and within summary statistics are presented in Panel A of

Table 8. The value of duration illiq is between 0 and 231. The mean value is 2.37, implying

that on average the illiquid regime lasts for about two and a half days. freq illiq has

the mean value of 0.22, so stocks are in the illiquid regime 22% out of total trading days.

We notice that there are stocks that are never in the illiquid regime (duration illiq=0 and

freq illiq=0) and stocks that are always in the illiquid regime (duration illiq=231 and

freq illiq=1). The interaction term, duration illiq × freq illiq equals to 1.68 on average.

Panel B of Table 8 reports the between and within correlation between this mea-

surement and the measurement based on the Markov regime switching model and illiq as

well. In general these two measurements are correlated as expected. Although calculated in

two different ways, they all have significantly positive correlations. p5
11 and duration illiq

both measure the persistence of the illiquid regime, and their between correlation is 0.15,

significant at 95% level. Moreover, p1 and freq illiq are different measures of the frequency

of the illiquid regime and their between correlation is 0.24. Finally, two measures of liquid-
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ity traps, liq trap prob and duration illiq × freq illiq, also have a reasonable value of the

between correlation, positive and significant. These results suggest that the two measure-

ments are not equivalent, but it is plausible to use them as alternative measures of liquidity

traps. There is one more thing worth attention. Both the between and within correlation of

duration illiq and freq illiq are considerably high. Therefore, a multicollinearity problem

is very likely to arise when they are both included in a joint test.

[insert Table 9]

We apply the similar Fama-MacBeth regressions to the alternative measure of liq-

uidity traps. Table 9 investigates the pricing of duration illiq × freq illiq and its two

factors, controlling for the illiquidity level and Fama-French three factors. Over the en-

tire sample period and two subperiods duration illiq × freq illiq always has significantly

positive coefficient. The value of 0.40 for the entire sample indicates that a one standard

deviation change in duration illiq × freq illiq leads to a yearly return approximately 3.6%

(= 7.41 × 0.40 × 10−3 × 12). Therefore, duration illiq × freq illiq not only has statisti-

cal significance, but also has economical significance. Model (2) and (3) show that both

duration illiq and freq illiq can explain stock returns in the cross-section. Model (4) in-

clude both duration illiq and freq illiq in a joint test, and it seems that duration illiq is

more important in explaining cross-sectional returns for the entire sample and in the second

subperiod.

[insert Table 10]

We add other firm characteristics to the above Fama-MacBeth regressions and

present the results in Table 10. The findings over the pricing of duration illiq × freq illiq

are robust to the additional control variables. For the entire sample and two subperiods,

we all find significantly positive effects of duration illiq × freq illiq on stock returns in the

cross-section. In addition, the two factors, especially duration illiq, have strong explana-

tory power in the univariate regressions. We fail to find significant results in the multivariate

regressions, probably due to the multicollinearity problem.
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5.2 January effect

We investigate whether the effects of liquidity traps on returns are due to the January effect.

Previous studies show that excluding January makes the effects of size and big-ask spread

insignificant (for example, Keim (1983); Eleswarapu and Reinganum (1993)). To explore

whether the liquidity trap premium we found is related to the January effect, we conduct the

Fama-MacBeth cross-sectional regressions over the entire sample period excluding January.

[insert Table 11]

We perform the analysis twice, once with the model-based measure of liquidity traps

and once with the simple measure of liquidity traps. In Panel A of Table 11, we use p5
11 and

p1 as the measures for the persistence of the illiquid regime and the frequency of the illiquid

regime respectively. The multiplication of these two variables is the liquidity trap probability,

liq trap prob. Excluding January, there are in total a number of 495 monthly estimates in

the second step of the Fama-MacBeth regression. As before, the coefficient on liq trap prob

is significantly positive after control for the illiquidity level, other firm characteristics and

Fama-French three factors. In univariate regressions, both p5
11 and p1 have significantly

positive coefficients. The joint test implies that both of them have important explanatory

power for cross-sectional returns. .

Panel B repeats the analysis but we measure the persistence of the illiquid regime

by duration illiq and the frequency of the illiquid regime by freq illiq. Correspondingly,

duration illiq×freq illiq is used as the measure for liquidity traps. Our main finding is still

robust after taking into account the January effect. Again, the premium of duration illiq×
freq illiq is positive and significant. Model (2) and (3) show that duration illiq and

freq illiq have separate explanatory power for the cross-sectional returns. In the joint test,

however, there is no significance for both variables. As mentioned before, it is possibly due

to the fact that duration illiq and freq illiq are highly correlated.
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6 Conclusion

There are a number of theoretical and empirical papers that study the relationship between

liquidity level and stuck returns (e.g. Amihud and Mendelson (1986), Brennan and Subrah-

manyam (1996), Amihud (2002)). In this paper, we argue that liquidity level is not the only

aspect of liquidity that is priced. We bring in the idea of liquidity traps. In our setting,

there are two regimes in the market, an illiquid regime and a liquid regime. When a stock

falls into the illiquid regime and stays in the illiquid regime for a long time, we say it is stuck

in a liquidity trap. This kind of stocks would constantly have low liquidity and could be

problematic for investors when they need to trade. Therefore, we argue that liquidity trap

as a firm characteristic should have a positive premium.

Using NYSE/AMEX common stock data between 1963 to 2008, we measure liquidity

traps by the liquidity trap probability estimated from the Markov regime switching model.

The liquidity trap probability is the interaction of the persistence of the illiquid regime and

the frequency of the illiquid regime. The former is measured by the probability that a stock

remains in the illiquid regime for five subsequent days given it is in the illiquid regime on

previous day, and the latter is measure by the unconditional probability that a stock is in the

illiquid regime. We investigate the pricing of the liquidity trap probability using portfolio

sorting analysis and Fama-MacBeth regressions. We find reliable evidence that the liquidity

trap probability has a positive effect on cross-sectional returns. The premium of the liquidity

trap probability is both statistically and economically significant. Moreover, both factors of

the liquidity trap probability are important in explaining the cross-sectional returns. Then

we calculate an alternative measure of liquidity traps without any model specification and

find qualitatively equivalent results. Our results are also robust to the January effect.

18



Appendix: Hamilton filter

In order to simplify the notation, we replace illiqd by yt and use subscript t instead of d.

We denote Ωt = {yt, yt−1, · · · , y0} as the set of observations up to time t. And we denote

θ = (p, q, µ0, ρ, σ0, σ1)
′ as a vector of parameters. The transition probability p00 and p11 are:

p00 =
exp(p)

1 + exp(p)
(14)

p11 =
exp(q)

1 + exp(q)
(15)

The autocorrelation parameter φ is:

φ =
exp(ρ)− 1

exp(ρ) + 1
(16)

Given Pr(st = 0|Ωt) = π0 and Pr(st = 1|Ωt) = π1, we can get

Pr(st+1 = 0, st = 0|Ωt) = Pr(st+1 = 0|st = 0; Ωt) · Pr(st = 0|Ωt) = p00π0 (17)

Pr(st+1 = 1, st = 0|Ωt) = Pr(st+1 = 1|st = 0; Ωt) · Pr(st = 0|Ωt) = p01π0 (18)

Pr(st+1 = 0, st = 1|Ωt) = Pr(st+1 = 0|st = 1; Ωt) · Pr(st = 1|Ωt) = p10π1 (19)

Pr(st+1 = 1, st = 1|Ωt) = Pr(st+1 = 1|st = 1; Ωt) · Pr(st = 1|Ωt) = p11π1 (20)
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Moreover,

f(yt+1|st+1 = 0; st = 0; Ωt; θ) =
1√

2πσ0

exp

(
− [(yt+1 − µ0)− φ(yt − µ0)]

2

2σ2
0

)
(21)

f(yt+1|st+1 = 1; st = 0; Ωt; θ) =
1√

2πσ1

exp

(
− [(yt+1 − µ1)− φ(yt − µ0)]

2

2σ2
1

)
(22)

f(yt+1|st+1 = 0; st = 1; Ωt; θ) =
1√

2πσ0

exp

(
− [(yt+1 − µ0)− φ(yt − µ1)]

2

2σ2
0

)
(23)

f(yt+1|st+1 = 1; st = 1; Ωt; θ) =
1√

2πσ1

exp

(
− [(yt+1 − µ1)− φ(yt − µ1)]

2

2σ2
1

)
(24)

Therefore,

f(yt+1|Ωt; θ) =
1∑

j=0

1∑
i=0

f(yt+1, st+1 = j, st = i|Ωt; θ) (25)

=
1∑

j=0

1∑
i=0

f(yt+1|st+1 = j; st = i; Ωt; θ) · Pr(st+1 = j, st = i|Ωt; θ) (26)

= (21)× (17) + (22)× (18) + (23)× (19) + (24)× (20) (27)

In addition, once yt+1 is observed at the end of time t+1, the probability terms are updated

as

Pr(st+1 = 0, st = 0|Ωt+1) = Pr(st+1 = 0, st = 0|yt+1; Ωt) (28)

=
f(yt+1, st+1 = 0, st = 0|Ωt; θ)

f(yt+1|Ωt; θ)
(29)

=
f(yt+1|st+1 = 0; st = 0; Ωt; θ) · Pr(st+1 = 0, st = 0|Ωt; θ)

f(yt+1|Ωt; θ)
(30)

=
(21)× (17)

(27)
(31)
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Similarly,

Pr(st+1 = 1, st = 0|Ωt+1) =
(22)× (18)

(27)
(32)

Pr(st+1 = 0, st = 1|Ωt+1) =
(23)× (19)

(27)
(33)

Pr(st+1 = 1, st = 1|Ωt+1) =
(24)× (20)

(27)
(34)

And then updating

Pr(st+1 = 0|Ωt+1) = Pr(st+1 = 0, st = 0|Ωt+1) + Pr(st+1 = 0, st = 1|Ωt+1) (35)

= (31) + (33) (36)

Pr(st+1 = 1|Ωt+1) = Pr(st+1 = 1, st = 0|Ωt+1) + Pr(st+1 = 1, st = 1|Ωt+1) (37)

= (32) + (34) (38)

The above iteration yields the conditional log likelihood function:

log f(y0, y1, · · · , yT |y0; θ) =
T∑

t=0

log f(yt|Ωt−1; θ) (39)

The we can estimate θ by maximizing (39).
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Table 1: Summary statistics of general variables

This table presents overall, between, and within summary statistics for NYSE/AMEX firms over the sample
period from December 31, 1962 through December 31, 2008. The dataset includes yearly averages of: daily
stock returns (ret), daily closing price (prc), daily dollar volume (dvol), market capitalization (mcap),
Amihud’s ILLIQ measure (illiq), the mean-adjusted illiquidity level (illiqma), the return during the last
100 days of each year (r100), the return between the beginning of the year and the 100 days before its end
(r100yr), the standard deviation of the daily return (sdret), the dividend yield calculated as the sum of the
dividends during one year divided by the end-of-year price (divyld). We include the units of each variable
in parentheses. iN denotes the number of stocks.

Mean St.Dev. St.Dev. St.Dev. Min Max Median

Betweena Withinb

ret (bps) 6.22 20.66 8.18 18.98 -594.85 666.67 6.25

prc ($) 29.16 24.53 17.93 16.75 2.03 899.36 24.40

dvol ($ mio) 10.53 49.88 28.88 40.67 0.00 2418.54 0.54

mcap ($ bln) 2.41 11.37 7.46 8.58 0.00 498.41 0.32

illiq (%/mln) 0.41 1.06 0.74 0.76 0.00 31.88 0.06

illiqma 1.00 1.77 1.38 1.10 0.00 26.86 0.31

r100 0.05 0.28 0.10 0.26 -0.99 15.44 0.03

r100yr 0.12 0.39 0.14 0.36 -0.94 12.15 0.07

sdret (%) 2.43 1.20 0.82 0.87 0.00 42.63 2.19

divyld (%) 3.76 19.30 8.43 17.36 0.00 1920.00 2.69

iN 1639.28 261.65 112.13 236.40 1123.00 2147.00 1668.00
a: Based on the time means i.e. x̄i = 1

T

∑T
t=1 xi,t.

b: Based on the deviations from time means i.e. x∗i,t = xi,t − x̄i.



Table 2: Summary statistics of liquidity trap estimates based on the Markov regime
switching model

This table presents overall, between, and within summary statistics for the yearly estimates of the following
Markov regime switching model:

illiqi
d =

{
µi

0 + φiilliqi
d−1 + εi

d, if si
d = 0,

µi
1 + φiilliqi

d−1 + εi
d, if si

d = 1,
(40)

where illiqi
d is the illiquidity level of stock i on day d. εi

d ∼ N(0, σsi
d
) in regime si

d. We denote sd = 0 as
the liquid regime and sd = 1 as the illiquid regime. Moreover, si

d follows a first order Markov chain with the
following transition matrix:

Pr(si
d = 0|si

d−1 = 0) = pi
00 (41)

Pr(si
d = 1|si

d−1 = 1) = pi
11 (42)

We define the liquidity trap probability, liq trap probi as the probability that stock i is in the illiquid regime
for five subsequent days:

liq trap probi = p5
11 × p1 =

(pi
11)

5(1− pi
00)

2− pi
00 − pi

11

(43)

where p1 = Pr(si
d = 1). We estimate the above Markov regime-switching model for each stock each year.

We pool illiqi
d of all stocks in year y together and set the upper 20% percentile as the illiquidity level in the

illiquid regime for all stocks, µ1. Details of the estimation can be found in Appendix. iConverge denotes
the percentage that the MLE gets convergence.

Mean St.Dev. St.Dev. St.Dev. Min Max Median

Betweena Withinb

iConverge 0.97 0.18 0.09 0.16 0.00 1.00 1.00

p00 0.89 0.08 0.04 0.07 0.00 1.00 0.90

p11 0.45 0.31 0.13 0.28 0.00 1.00 0.42

µ0 0.25 0.39 0.28 0.28 -3.63 4.92 0.10

µ1 0.59 0.41 0.21 0.36 0.07 1.68 0.52

σ0 0.18 0.28 0.20 0.20 0.00 1.87 0.07

σ1 1.41 2.36 1.65 1.69 0.00 20.29 0.47

φ 0.18 0.17 0.08 0.14 -0.93 1.00 0.12

p5
11 0.15 0.26 0.11 0.23 0.00 1.00 0.01

p1 0.21 0.15 0.07 0.14 0.00 1.00 0.17

liq trap prob 0.06 0.12 0.05 0.11 0.00 1.00 0.00
a: Based on the time means i.e. x̄i = 1

T

∑T
t=1 xi,t.

b: Based on the deviations from time means i.e. x∗i,t = xi,t − x̄i.
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Table 4: Excess returns of portfolios single-sorted by liq trap prob

This table presents the excess returns of single-sorted portfolios, following Fu (2009). In each month we sort
stocks into five quintiles based on their liq trap prob in the previous year. These portfolios are rebalanced
monthly and are equal weighted. The column labeled “ret− rf (%)” is the time-series means of the monthly
portfolio returns in percentage. The column labeled “t-stat” is the robust Newey-West (1987) t-statistics.
“1” (“5”) represents the low (high) value. The row “5-1” refers to the difference in monthly returns between
portfolio 5 and portfolio 1. We do the analysis for three sample period, all months from January 1964 to
December 2008, months over 1964 to 1985, months over 1986 to 2008.

All months 1964-1985 1986-2008

Rank ret− rf (%) t-stat ret− rf (%) t-stat ret− rf (%) t-stat

1 (Low) 0.62 2.68** 0.68 1.93* 0.57 1.86*

2 0.61 2.49** 0.67 1.83* 0.56 1.69*

3 0.64 2.49** 0.69 1.77* 0.60 1.75*

4 0.70 2.46** 0.77 1.76* 0.63 1.73*

5 (High) 0.91 2.86** 0.90 1.90* 0.92 2.16**

5− 1 0.28 2.36** 0.21 1.33 0.35 1.98**
∗∗: Significant at a 95% level.
∗ : Significant at a 90% level.



Table 5: Excess returns of double-sorted portfolios

This table presents the excess returns of double-sorted portfolios, following Ang, Hodrick, Xing and Zhang
(2006). In Panel A, we first sort stocks into five quintiles based on their p5

11 in the previous year. Then within
each quintile, we sort stocks based on their liq trap prob in the previous year. These portfolios are rebalanced
monthly and are equal weighted. After forming the 5 × 5 p5

11 and liq trap prob portfolios, we average the
returns of each liq trap prob quintile over the five p5

11 portfolios. The column labeled “ret − rf (%)” is
the time-series means of the monthly portfolio returns in percentage. The column labeled “t-stat” is the
robust Newey-West (1987) t-statistics. “1” (“5”) represents the low (high) value. The row “5-1” refers to
the difference in monthly returns between portfolio 5 and portfolio 1. We do the analysis for three sample
period, all months from January 1964 to December 2008, months over 1964 to 1985, months over 1986 to
2008. In Panel B and C, the same approach is used except we control for p1 and illiq respectively.

Panel A: Controlling for p5
11

All months 1964-1985 1986-2008

Rank ret− rf (%) t-stat ret− rf (%) t-stat ret− rf (%) t-stat

1 (Low) 0.52 3.48** 0.47 2.37** 0.56 2.55**

2 0.55 3.60** 0.52 2.50** 0.58 2.59**

3 0.63 3.92** 0.58 2.62** 0.68 2.93**

4 0.62 3.57** 0.56 2.38** 0.68 2.67**

5 (High) 0.70 3.63** 0.63 2.37** 0.77 2.76**

5− 1 0.19 2.35** 0.16 1.29 0.21 2.18**

Panel B: Controlling for p1

All months 1964-1985 1986-2008

Rank ret− rf (%) t-stat ret− rf (%) t-stat ret− rf (%) t-stat

1 (Low) 0.66 4.44** 0.68 3.46** 0.63 2.85**

2 0.46 2.89** 0.41 1.92* 0.51 2.17**

3 0.51 3.10** 0.40 1.79* 0.61 2.60**

4 0.61 3.53** 0.56 2.35** 0.66 2.64**

5 (High) 0.79 4.22** 0.71 2.73** 0.87 3.24**

5− 1 0.13 1.70* 0.03 0.24 0.24 2.55**

Panel C: Controlling for illiq

All months 1964-1985 1986-2008

Rank ret− rf (%) t-stat ret− rf (%) t-stat ret− rf (%) t-stat

1 (Low) 0.48 3.28** 0.66 3.40** 0.29 1.31

2 0.53 3.31** 0.58 2.61** 0.48 2.07**

3 0.57 3.41** 0.53 2.36** 0.61 2.46**

4 0.66 3.81** 0.53 2.28** 0.79 3.09**

5 (High) 0.81 4.48** 0.54 2.25** 1.10 4.02**

5− 1 0.33 3.06** -0.12 -0.78 0.81 5.37**
∗∗: Significant at a 95% level.
∗ : Significant at a 90% level.
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Table 11: Fama-MacBeth regressions, excluding January effects
This table presents the estimation results of the Fama-MacBeth two-step regressions, over the entire sample
period excluding January. In the first step, the factor loadings are estimated for each stock each year
via OLS: ri,d,y = ai,y + βMKT

i,y MKTd,y + βSMB
i,y SMBd,y + βHML

i,y HMLd,y + εi,d,y. The factors considered
are the excess market return (MKT ), the Fama-French size factor (SMB) and the Fama-French book-to-
market factor (HML). In the second step, we apply the cross-sectional regression in each month via OLS,
ri,m,y = γm + λ′mβi,y + δ′mZi,y−1 + εi,m,y, where ri,m,y denotes the monthly excess return (relative to the
risk-free rate) of stock i in month m of year y. βi,y is a vector of K factor loadings of stock i in year
y. λm is a vector of risk premiums in month m. Zi,y−1 is a vector of L firm characteristics of stock i in
year y − 1. In Panel A we use the liquidity trap probability (liq trap prob), the probability that a stock
is in the illiquid regime for 5 days given that it is in the illiquid regime in the last period (p5

11) and the
stationary probability that a stock is in the illiquid regime (p1). In Panel B we use the interaction term
of the duration and frequency of the illiquid regime (duration illiq × freq illiq), the duration that a stock
is in the illiquid regime (duration illiq), the frequency that a stock is in the illiquid regime (freq illiq).
Moreover, we also include other control variables in both panels, such as the mean-adjusted illiquidity level
(illiqma), the return during the last 100 days of each year (r100), the return between the beginning of
the year and the 100 days before its end (r100yr), the standard deviation of the daily return (sdret), the
logarithm of the market capitalization (lnsize), and the dividend yield (divyld). δ is a vector of coefficients
for the firm characteristics. The final estimate, δ̂ and its variance are given by: δ̂ = 1

M

∑M
m=1 δ̂m and

V ar(δ̂) = 1
M(M−1)

∑M
m=1(δ̂m − δ̂)2, where M is the total number of months in the sample. Similarly, λ̂ and

its variance are given by: λ̂ = 1
M

∑M
m=1 λ̂m and V ar(λ̂) = 1

M(M−1)

∑M
m=1(λ̂m− λ̂)2. t-statistics are reported

in parentheses. All coefficients are multiplied by 1000.

Panel A: liq trap prob

(1) (2) (3) (4)

liq trap prob 6.76**

(3.29)

p5
11 3.31** 2.36**

(4.01) (2.42)

p1 5.49** 3.22**

(4.13) (2.04)

illiqma 0.95** 0.96** 0.93** 0.95**

(5.71) (5.73) (5.59) (5.66)

r100 7.93** 7.98** 7.83** 7.85**

(4.73) (4.76) (4.66) (4.66)

r100yr 2.07* 2.01* 1.93* 1.92

(1.77) (1.72) (1.65) (1.64)

lnsize -1.85** -1.89** -1.75** -1.82**

(-6.68) (-6.80) (-6.31) (-6.59)

sdret -4.56** -4.62** -4.49** -4.61**

(-7.73) (-7.82) (-7.56) (-7.83)

divyld -0.00 -0.00 0.00 -0.00

(-0.03) (-0.02) (0.04) (-0.02)

βMKT 7.16** 7.14** 7.26** 7.20**

(3.79) (3.78) (3.84) (3.81)

βSMB -3.25** -3.22** -3.32** -3.28**

(-2.75) (-2.73) (-2.81) (-2.78)

βHML -2.93** -2.94** -2.93** -2.95**

(-2.56) (-2.56) (-2.56) (-2.57)

intercept 18.67** 18.87** 17.15** 18.00**

(7.69) (7.79) (7.08) (7.59)



Table 11: Continued

Panel B: duration illiq × freq illiq

(1) (2) (3) (4)

duration illiq × freq illiq 0.43**

(3.98)

duration illiq 0.29** 0.20

(3.14) (1.34)

freq illiq 2.50** 1.32

(3.71) (1.19)

illiqma 1.46** 1.56** 1.51** 1.50**

(5.39) (5.84) (5.76) (5.56)

r100 7.80** 7.73** 7.72** 7.70**

(5.08) (5.04) (5.04) (5.02)

r100yr 1.60 1.55 1.59 1.58

(1.59) (1.54) (1.58) (1.57)

lnsize -1.91** -1.86** -1.82** -1.80**

(-7.67) (-7.53) (-7.36) (-7.32)

sdret -5.35** -5.35** -5.32** -5.32**

(-9.72) (-9.71) (-9.69) (-9.67)

divyld 0.07 0.07 0.08 0.07

(1.35) (1.34) (1.40) (1.38)

βMKT 7.18** 7.21** 7.21** 7.21**

(3.83) (3.84) (3.85) (3.85)

βSMB -2.86** -2.86** -2.85** -2.85**

(-2.42) (-2.42) (-2.41) (-2.41)

βHML -3.05** -3.05** -3.05** -3.04**

(-2.67) (-2.67) (-2.67) (-2.67)

intercept 19.65** 19.22** 18.93** 18.82**

(8.37) (8.24) (8.09) (8.05)
∗∗: Significant at a 95% level.
∗ : Significant at a 90% level.


