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1 Introduction

Financial economics has seen a recent surge of empirical research on trader types, order

imbalances, liquidity, and return predictability. Papers from the last five years show that:

i) Market makers’ inventories predict future returns at daily and weekly horizons; ii) Both

individuals and market makers trade against price movements on the New York Stock Ex-

change (NYSE); iii) Individuals’ order imbalances on the NYSE predict returns at weekly

and monthly horizons; and iv) Institutions tend to be on one side of a given trade while

market makers and individuals are on the other.1

The goal of our paper is to provide a unified framework that integrates the above results. We

propose a theoretical model with two groups of long-term investors (institutions and indi-

viduals) along with a third group of market makers. Agents differ along two key dimensions.

The long-term investors seek to hedge non-traded risky income; the market makers do not.

One group (individuals) pays a participation cost enabling them to trade in both the model’s

periods; the other two groups are free to trade in both periods. Despite its simplicity, our

model produces numerous predictions regarding return dynamics, order flow dynamics, and

return-flow dynamics.2 These predictions are both consistent with results mentioned in the

opening paragraph and new.

To test predictions of our model, we estimate a statistical state-space model. We start

with the hypothesis that a stock’s observable market price reflects both information about

the stock’s fundamental value (known as its “efficient price”) and the effects of transitory

liquidity shocks (known as “price pressure”). Neither the efficient, nor the transitory, price is

observable. We introduce trading measures (market maker inventories and individuals’ order

imbalances) into the estimation and then employ a Kalman filter to disentangle changes in

a stock’s fundamental value from transitory price pressure.3

Estimation of the state-space model raises additional, possibly broader, questions that are

relevant to empirical asset pricing studies using monthly stock prices and returns. How

“noisy” are these data? More precisely, how large are transitory price deviations around

1For examples, see Hendershott and Seasholes (2007); Hendershott and Menkveld (2010); Kaniel, Saar, and Titman
(2008); and Boehmer and Wu (2008).

2Note that any prediction involving order flows can be produced each of the three investor groups.
3There exists an adding up constraint in our framework. The signed order flows of institutions, individuals, and

market makers must sum to zero. Therefore, when estimating our statistical model, we drop trading measures from
one of the three groups (institutions).
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fundamental values? How far do trading imbalances push prices away from fundamentals at

a monthly frequency? How can we use trading measures from market participants to help

answer these questions?

In this paper, we study monthly prices and returns of NYSE stocks. Our dataset includes

NYSE specialists’ (market makers’) closing inventories for each stock, at the end of each

month, starting January 1999, and ending December 2005. We also obtain monthly order

imbalances (buys minus sells) for individuals trading on the NYSE and over the same time

period.

Our first empirical result is that, at a monthly frequency, transitory price pressure is more

than 28% the magnitude of efficient price variation. The amount is both statistically and

economically significant. The Kalman filter provides time series estimates of a stock’s efficient

prices and associated price deviations. We are then able to study correlations of changes in

efficient prices, price deviations, and trading measures from different market participants.

These correlations, along with our theoretical model, provide support for including trading

measures directly into the state space estimation.

Including trading measures into the state space model produces a plethora of results. We

briefly summarize the findings here, while noting that results 1, 2, 3, 5, and 9 below represent

some of this paper’s main empirical contributions:

1. Specialists’ inventories are negatively correlated with transitory price movements.

(New) In terms of magnitude, a $100,000 deviation in a specialist’s inventory is asso-

ciated with a 0.25% transitory deviation in a stock’s monthly price. A one standard

deviation in inventories is associated with a 1.58% deviation in transitory prices and

accounts for 12.22% of transitory price variance. The results are larger for small stocks

(0.50%, 2.48% and 30.10% respectively).

2. Individuals’ net trades are negatively correlated with transitory price movements.

(New) In terms of magnitude, a $100,000 deviation in individuals’ net trades is asso-

ciated with a 0.06% transitory deviation in a stock’s monthly price (but, the standard

deviations of individuals’ net trades are large.) A one standard deviation in individu-

als’ net trades is associated with a 1.66% deviation in transitory prices and accounts

for 13.49% of transitory price variance. The results are larger for small stocks (0.17,

1.97%, and 19.00% respectively).
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3. (New) Transitory price movements this month are negatively correlated with individu-

als’ net trades next month.

4. Specialists’ inventories and individuals’ net trades are contemporaneously and posi-

tively correlated. Both groups can be said to trade against price movements.

5. (New) Specialists’ inventories are positively correlated with individuals’ future net

trades. This result is consistent with specialists being able to unwind their positions

(at least in part) by trading with individuals who arrive to the market with “delay”.

6. Individuals’ net trades are positively auto-correlated. There is no evidence that indi-

viduals mean revert their positions nor do they appear to manage inventory risk. In

brief, individuals do not act in a manner consistent with traditional models of market

making.

7. Specialists’ inventories are negatively auto-correlated indicating this group manages

inventory risk in a manner consistent with traditional models of market making.

8. Specialists are (partially) compensated for providing immediacy via return reversals.

Their respective inventories and net trades are positively correlated with future returns.

9. (New) Our two trading variables provide separate and complementary information

about transitory price pressure. When both variables are included/interacted in our

state-space model, they explain 37.81% of transitory variance (59.73% for small stocks).

Put differently, downward (upward) transitory price pressure is particularly severe when

specialists are long (short) and individuals are buying (selling).

Our empirical results are consistent with our theoretical model of imperfect risk sharing and

costly participation. Market makers have low participation costs and continuously monitor

the market. They are able to quickly trade against price movements. Individuals, on the

other hand, have higher participation costs and participate intermittently. Some individuals

trade at the time of an initial shock; others delay their trades. When market makers unwind

positions, they are able to trade with the second (delayed) group of individuals.
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1.1 Related Literature

Due to our paper’s goal of providing a unified framework, our results touch on a number of

different literatures. First, studies of NYSE specialists date back to Madhavan and Smidt

(1993) and have recently been enhanced by Hendershott and Seasholes (2007) and Hender-

shott and Menkveld (2010). As with these studies, we show specialists trade against price

movements and later work to mean revert their inventories.

Second, a paper by Kaniel, Saar, and Titman (2008) is our motivation for studying indi-

viduals’ net trades on the NYSE. The authors study a large cross-section of NYSE stocks

from January 2000 to December 2003. Individuals are shown to buy (sell) stocks that have

recently fallen (risen) in price. Sorting stocks by the degree of buying and selling allows

the authors to form a long-short portfolio that earns over 120 basis points in the 20 days

following formation.

Third, our paper is tangentially related to a long history of research into institutional trad-

ing. Some papers, such as Nofsinger and Sias (1999) and Cohen, Gompers, and Vuolteenaho

(2002), use an adding up constraint to set individual imbalances equal to one minus institu-

tional imbalances. More recently, Boehmer and Wu (2008) show individuals and institutions

typically have order imbalances with opposite signs, indicating these groups trade against

each other (at least in part).

Fourth, two recent papers introduce an econometric approach to disentangling permanent

and transitory price changes. Menkveld, Koopman, and Lucas (2007) proposes a state-space

model to study price discovery in partially overlapping markets. Hendershott and Menkveld

(2010) uses the approach to estimate the time series properties of daily price pressures.

These properties are shown to identify the deep parameters from a stylized model of an

intermediary who dynamically controls his inventory.

Fifth, our participation cost model is related to recent work by Lo, Mamaysky, and Wang

(2004) and Vayanos and Wang (2009). Both papers study trading between two groups

of long-term investors, while we add a third group of market makers. Our modeling of

participation costs is simplified and we assume the costs only affect one group (individuals).

The remainder of our paper is structured as follows. Section 2 outlines an economic frame-

work with imperfect risk sharing and costly participation. Section 3 describes the paper’s
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data and provides overview statistics. Section 4 estimates a base case version of the state

space model. The base case version does not use trading variables. Section 5 introduces trad-

ing variables into the state space model and produces this paper’s main empirical results.

Section 6 concludes.

2 Theoretical Framework

We model an economy in which two groups of long-term investors hedge non-traded risky

income. We deviate from existing work by adding market makers as a third group and

by assuming only one group of long-term investors pays a participation cost. A nonzero

participation cost captures the notion that the opportunity cost of participating continuously

in the market is higher for non-professionals (individuals) than for professionals (institutions).

The Economy: There are three dates denoted t = {1, 2, 3} and two assets. The first asset

is a riskless security, used as the numeraire good, and assumed to have a zero rate of return.

The second is a risky asset that pays D̃3 units of the consumption good at t=3, where

D̃3 = D̄+ ε̃2 + ε̃3. The distribution of ε̃t is normal with mean 0 and variance σ2
t . We denote

P̃t as the risky asset’s price on date t with P̃3 = D̃3.

Agents: There are three types of agents in the market denoted {a, b,m}. All are assumed to

be present with measure zero. For concreteness, consider Group a to be comprised of long-

term investors called “institutions”, Group b to be long-term investors called “individuals”,

and Group m to be short-term investors called “market makers” or “arbitrageurs”. For

simplicity, each group is assumed to be mass one and have an initial endowment of θ risky

asset shares and no riskless assets.

The agents differ along two important dimensions. First, Groups a and b have opposite

exposure to a non-traded risk which is perfectly correlated with the t=3 payoff of the risky

asset. Second, Group b pays a participation cost in order to trade the risky asset at t=1.

These costs are discussed directly below a chart which helps summarize the model:
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Risk Sharing Motive to Trade

Yes No

Yes
Group b

Costly Individuals

Partic.
No

Group a Group m

Institutions Market-Makers

Participation Costs: Group a’s participation costs are zero, so they can trade freely at

both t=1 and t=2. Group b has a participation cost of “c” at t=1. Due to this cost,

some individuals refrain from trading at t=1 leading to a “participation intensity” for the

group that is denoted λ. At t=2, all individuals participate. Importantly, λ is endogenously

determined in this model. Group m’s participation costs are zero.4

Timing of the Model: There is a shock to the non-traded risk at t=1 which induces

investors to trade. Group a investors receive a shock equal to +z(D̃3−D̄) of the consumption

good and Group b receives a shock −z(D̃3 − D̄). Without loss of generality, we set z=1 for

the remainder of this paper.

Part of the dividend (ε2) is revealed to all investors at t=2 which also induces investors to

trade. The final part of the dividend (ε3) is revealed to all investors at t=3. At t=1, orders in

the market may not be balanced due to the delay of (1−λ) investors from Group b. Market

makers offset temporary imbalances by taking positions. At t=2, all investors are present

and market makers are able to unwind their positions.

Agents’ Maximization Problems: Investors maximize the expected utility of wealth at

t=3 which is denoted E
[
U(W j

3 )
]

for group j. We assume agents have exponential utility

functions of the form U(W j
3 ) = −e−δW3 where δ is the coefficient of risk aversion. Let x̄jt

be the number of risky asset units owned by group j at date t. The group’s excess demand

is denoted xjt = x̄jt − θ. For example, at t=1, institutions own xa1 + θ of the risky asset.

We use Bj
t to denote group j’s holdings of the riskfree asset. Wealth at time t is given by

Bj
t + x̄jt−1P̃t.

4We can consider that individual investors may not participate at short term horizons due to participation costs
but in the long run they will all participate at least once in the market. Our 3-date model is stylized. We envisage
σ2
3 >> σ2

2 so that date t=2 can be thought of as a shorter-term horizon while date t=3 represents a longer-time
horizon.
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Equilibrium Prices and Holdings: We solve for equilibrium prices and holdings by

backwards induction and define the expectation of D̃3 at t=2 as E2

[
D̃3

]
= D̄ + ε2. Please

see Appendix A for associated proofs and expanded equations. A summary of the model’s

results are presented in the chart below. The term “Group b(p)” indicates individuals who

choose to participate at both t=1 and t=2. The term “Group b(np)” indicates individuals

who only participate at t=2.

t=1 t=2

Price of Risky Asset D̄ − θδ(σ2
2 + σ2

3)− 1−λ
λ+2

δσ2
2 D̄ + ε2 − θδσ2

3

Holdings of Group a −2λ+1
λ+2

+ θ −1 + θ

Holdings of Group b(p) λ ·
(

3
λ+2

+ θ
)

λ · (1 + θ)

Holdings of Group b(np) (1− λ) · θ (1− λ) · (1 + θ)

Holdings of Group m 1−λ
λ+2

+ θ +θ

Aggregate Holdings 3 θ 3 θ

The price at time t=1 is the sum of the expected future payoff (D̄) and two terms. The first

term is a risk premium of −θδ(σ2
2 + σ2

3) and stems from dividend uncertainty. The second

term is −1−λ
λ+2

δσ2
2 which we define to be price pressure and denote “s1”.

s1 ≡ P1 − P ∗1
= P1 −

(
D̄ − θδ

(
σ2

2 + σ2
3

))
= −1− λ

λ+ 2
δσ2

2

Our defined price pressure variable represents a deviation from the risk-adjusted price that

would have been observed in a frictionless world (P ∗1 ). Intuitively, s1 is the mass of trades

that need to be cleared (by the market-markers) divided by the mass of agents in the market

at t=1. Notice that s1 is monotonically decreasing in magnitude as λ goes from zero to one.

The price pressure also represents the premium charged by market makers as compensation

for providing liquidity and clearing the market (a type of liquidity premium/discount).

Finally, we note that at t=2, the risk premium is θδσ2
3 reflecting the remaining dividend

uncertainty. The transitory price pressure has dissipated at t=2 (in our model) and does not

affect the total risk premium term.
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Endogenous Intensity Level: Individual investors are indifferent between delaying one

period and participating at both t=1 and t=2 when E
[
U(W

b(p)
3 )

]
=E
[
U(W

b(np)
3 )

]
. Using this

condition, we solve for the endogenously determined participation intensity:

λ =
3
√
δ√

2c
σ2 − 2

We provide some comparative statics for the expression above. As costs go up (c ↑), partici-

pation intensity falls (λ ↓). As risk aversion rises (δ ↑) or uncertainty about future dividends

rises (σ2 ↑), participation intensity also rises (λ ↑). If participation costs c > 9
8
δσ2

2, no indi-

vidual investor participates at t=1. If c < 1
2
δσ2

2, all individual investors participate at t=1

and t=2.

2.1 Model’s Testable Predictions

To test the model’s predictions, please note: 1) There is an adding-up constraint. Therefore,

and from this point onward in the paper, we focus on trading variables from two of the three

participant groups (market makers and individuals). 2) As explained in Section 3, NYSE

data contain individuals’ net trades (∆xbt) but not their holdings (xbt). 3) Individuals’ net

trades are only observable for the group as a whole and denoted ∆xbt .

With the above three notes in mind, the chart below displays the sign of six predicted

relations from the model. The first six bullet points come directly from the chart. Bullet

points 2, 3, 4, 5, 6, and 8 represent rather novel predictions of the model.

Price Market Maker Individuals’
Pressure Inventories Net Trades

s1 x̄m1 ∆xb1

x̄m1 –

∆xb1 – +

∆xb2 – + +

1. Price pressure is negatively related with market makers’ inventory positions at t=1.

From the model’s results, we can show: s1 = −xm1 δσ2
2 = −(x̄m1 − θ)δσ2

2. Market makers

buy (sell) as transitory prices fall (rise).
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2. Price pressure is negatively related with individual investors’ t=1 net trading imbal-

ances: s1 = −1
2

(
1 + ∆xb1

)
δσ2

2. This prediction supports empirical findings from Kaniel,

Saar, and Titman (2008).

3. Price pressure is negatively related with individual investors’ t=2 net trading imbal-

ances: s1 = −1
2
∆xb2δσ

2
2. Price pressure is larger in magnitude as participation intensity

drops. Low participation intensity at t=1 implies “more” individuals are trading at

t=2.

4. Market makers’ inventories at t=1 are positively related with individual investors’ net

trading imbalances at t=1. Since 1 − λ individuals do not participate at t=1, market

makers must “step-in” to help clear the market.

5. Market makers’ inventories at t=1 are positively related with individual investors’ net

trading imbalances at t=2. Part of the market-makers’ ability to unwind positions

comes from trading with the individual investors who enter the market at t=2.

6. Individual investors’ net trading imbalances are persistent. The average net trading

imbalance at time t=1 is ∆xb1 = 3λ
λ+2

and the average net trading imbalance at time

t=2 is ∆xb2 = 2(1−λ)
λ+2

. In order to hedge the non-tradeable risk, individuals want to buy

(or sell). Some come the market at t=1 and buy (or sell). The remaining individuals

arrive at t=2 and also want to buy (or sell).

7. Market makers’ inventories are mean-reverting and they fully unwind positions built

at t=1. To see this point, notice that market maker’s net trading imbalances are

∆xm1 = +1−λ
λ+2

and ∆xm2 = −1−λ
λ+2

. Part of the market makers’ ability to unwind positions

comes from trading with the individual investors who enter the market at t=2.

8. Individual investors’ participation intensity increases with the risk-aversion parame-

ter (δ), uncertainty about future dividends (σ2), and size of the shock to the non-traded

risk (set to ±1 in this paper). We do not test this prediction in this paper, but leave

it for future research.
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3 Data and Overview Statistics

We study monthly trading activity and stock prices starting January 1999 and ending De-

cember 2005 for a total of 84 months. Four sources provide the data used in this paper.

• An internal New York Stock Exchange (“NYSE”) database called the Specialist Sum-

mary File (or “SPETS”) contains specialists’ closing inventory positions for each stock

at the end each month. The NYSE assigns one specialist per stock and a given specialist

is responsible for approximately ten stocks.

• An internal NYSE database called the Consolidated Equity Audit Trail Data (or

“CAUD”) contains the number of shares bought and sold by individual investors, for

each stock, over each month. In addition, the CAUD database provides trading volume.

See Kaniel, Saar, and Titman (2008) for further discussion of the CAUD database.

• The Trades and Quotes (“TAQ”) database provides closing midquotes prices. Prices

and returns in this paper are measured at the midquote to avoid bid-ask bounce. All

prices are adjusted to account for stock splits and dividends.

• The Center for Research in Security Prices (“CRSP”) provides the number of shares

outstanding (used to calculate market capitalizations) and information necessary to

adjust prices for stock splits/distributions.

We start the 2,357 common stocks common stocks that can be matched across the NYSE,

TAQ, and CRSP databases. We construct a balanced panel of data to ensure results are

comparable throughout time. There are 1,037 stocks that exist for all 84 months in our

sample period. Stocks with an average share price of less than US$ 5 or larger than US$ 1,000

are removed from the sample. The final sample consists of 1,019 stocks.

We convert specialists’ inventory positions and individual net trades to US dollars (both

variables are originally in numbers of shares.) For a given stock, we multiply the number of

shares by the stock’s sample average price so as not to introduce price changes directly into

the trading variables. Using end-of-month prices would infect/negate the explanatory role

of trading variables (for transitory prices) in the Section 4 and 5 econometric models.
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Importantly, our statistical group has an unmodeled third group—institutions. We drop this

group due to adding up constraints in our model. In other words, if we know individuals’

net trades and market makers’ net trades, then we know institutional net trades as well.

Finally, many results are presented after sorting stocks into size quintiles. To ensure the

quintiles have constant compositions throughout the sample period, stocks are ranked based

on their average market capitalizations over the entire sample period.

3.1 Summary Statistics

Table 1, Panel A presents summary statistics for seven “raw” variables. For each of the

five market capitalization quintiles, we calculate each variable’s average value. The smallest

quintile’s average market capitalization is US$ 0.26 billion while the largest quintile’s is

US$ 33.90 billion. The last column shows the within standard deviation is US$ 6.57 billion.

[Insert Table 1]

The table also shows overview statistics for trading volume (in millions of shares) and closing

mid-quote prices. Trading variables include specialists’ inventories (in both thousands of

shares and dollars) and individuals’ net trades. On average, specialists hold half a million

U.S. dollars of inventory for large capitalization stocks. The positive average inventory values

may be due to asymmetric costs and shorting may involve more expenses than holding

stocks long. The within standard deviation is US$ 1.32 million and substantial relative

to the average position. The large standard deviation suggests that specialists are active

intermediaries.

Individuals’ average net trades are negative across all size quintiles indicating that individ-

uals’ positions have been reduced over our sample period. Individual investors, on average,

sell US$ 0.20 million in small-cap stocks and US$ 14.12 million in large-cap stocks each

month. The within standard deviation of individual net trades is US$ 18.17 million, which

is also large relative to their net trades. The summary statistics suggest individual investors

participate actively at a monthly frequency.
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3.2 Idiosyncratic Variables

Risks associated with market-wide return shocks can be hedged using highly-liquid index

products. In addition, aggregate inventories of liquidity providers are exposed to market-

wide return shocks. Therefore, our empirical analysis focuses almost entirely on idiosyncratic

components of our variables. For each return and trading variable, we construct a common

factor equal to the monthly market capitalization weighted average of the underlying variable.

We regress each variable on its common factor and save the residual as the corresponding

idiosyncratic variable. This procedure is detailed in Appendix D. For notational simplicity,

we omit any subsricpts or superscripts referring to “idiosyncratic,” and use Speci,t to denote

the idiosyncratic portion of the specialists’ dollar inventories (for example).

Table 1, Panel B provides summary statistics for idiosyncratic trading variables used in

this paper. Since the idiosyncratic variables are defined as residuals from a market model

regression, means are zero. See Appendix D. The panel focuses on standard deviations for

the five size quintiles and for the sample as a whole. We see the largest stocks have volatile

inventories (2,623.4 in thousands of dollars) and volatile net trades by individuals (39,505.0

also in thousands of dollars).

For completeness, we also report the standard deviations of idiosyncratic returns. As shown

in Appendix D, ridioi,t is stock i’s residual from a regression on current and lagged innovations

in the common return factor. Small stocks have an standard deviation of 13.74% while large

stocks have a standard deviation of 10.31%.

3.3 Unit Root Tests

We test for mean-reversion of specialists’ and individuals’ positions. The augmented Dickey-

Fuller test is performed on a stock-by-stock basis using the regressions below. Note that

while Speci,t and ∆Indvi,t are used throughout the paper, ∆Speci,t and Indvi,t are used only

for this test. All variables are defined explicitly in Appendix D.

∆Speci,t = α + βSpeci,t−1 + φ1∆Speci,t−1 + . . .+ φ4∆Speci,t−4 + εi,t

∆Indvi,t = α + βIndvi,t−1 + φ1∆Indvi,t−1 + . . .+ φ4∆Indvi,t−4 + εi,t

12



Table 2 presents the results of the augmented Dickey-Fuller tests. The table reports the

cross-sectional mean of the β coefficients and mean of the associated t-statistics. The table

also reports the p-value of a meta test statistic that counts the number of significant t−values

under (over) the 10% (90%) critical value if the cross-sectional mean is negative (positive).5

This meta test statistic is binomially distributed under null where the probability of “success”

equals the significance level of the augmented Dickey-Fuller test performed for each stock

estimation. We use a 10% critical value

[Insert Table 2]

We reject the existence of unit roots in the specialists’ inventory positions at all conventional

levels. A total of 862 of the 1,019 stocks reject the null. Our results indicate that NYSE

specialists behave in a manner consistent with theoretical models of market making. After

building a position, specialists quickly undo their trades and mean-revert inventories towards

target levels.6

We fail to reject the existence of unit roots in the individual inventory positions. Cross-

sectionally, we fail to reject for 968 of the 1,019 stocks. Our results indicate that, at the

aggregate level, individuals do not mean revert their holdings. The numbers of significant

t−values are available in the posted supplementary material.7

NYSE specialists’ inventory levels are stationary, while the levels for individuals are not

stationary. These results provide support for using the level of NYSE specialists’ inven-

tories (Speci,t) and the change in levels, or net trades, of individuals’ holdings (∆Indvi,t)

throughout the paper.

4 Price Decomposition—Base Case

This section presents the base case version of our state space (statistical) model. The base

case only uses price and innovations to prices (i.e., no trading variables) when decomposing

a stock i’s (observed) price into two unobserved components. The first is called the “efficient

5The 10% critical value of augmented Dickey-Fuller test is -2.57—see Cheung and Lai (1995).
6For related examples, see Ho and Stoll (1981), Madhavan and Smidt (1993), and Grossman and Miller (1988).
7See http://dl.dropbox.com/u/5179651/supplementarytables.pdf. We also test individual inventories using

5% critical values. However, the 10% threshold represents a weaker-than-normal test, that still ends with 968 out of
1,019 stocks failing to reject.
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price” and reflects the stock’s fundamental value. In our statistical model, the efficient

price follows a martingale process and is denoted mi,t throughout the paper. The second

component is called the “transitory price” and represents price pressure. The transitory

component is denoted si,t and is stationary.8

The model is estimated on a stock-by-stock basis. For estimation purposes, we use stock i’s

log price, expressed in basis points, after removing a required return. We denote this price

as pi,t. The required return is equal to the monthly risk free rate plus the stock’s beta times

a market risk premium of 6%. Appendix D provides details of the associated calculations.

All values are at the end of a given month t. The base case state space model consists of the

following three equations:

pi,t = mi,t + si,t (1)

mi,t = mi,t−1 + βift + wi,t (2)

si,t = φisi,t−1 + βi,0ft + . . .+ βi,3ft−3 + εi,t (3)

Above, ft represents the innovation of a common (market-wide) factor. Additional informa-

tion about calculating ft is given in Appendix D. The idiosyncratic innovation of stock i’s

efficient price is denoted wi,t and is one focus of this paper since it represents undiversifiable

risk. The ft terms in the transitory price equation captures current and lagged adjustment

to common factor innovation. εi,t is the idiosyncratic innovation of the stock’s transitory

price pressure.

Both wi,t and εi,t are assumed to be normal and independent in the base case estimation.

We revisit this assumption in Section 5 when we include trading variables in the state

space model. Price pressure persistence is accounted for by the auto-regressive term in the

transitory (si,t) equation. The AR(1) coefficient, φi, is constrained to be nonnegative.

The model is estimated with maximum likelihood and exploits a Kalman filter. The estima-

tion is implemented in Ox using standard optimization routines. The Kalman filter routines

8We are aware that the contemporaneous correlation between an efficient price innovation and a shock to the
transitory component is not identified econometrically in the absence of trade information—see Menkveld, Koopman,
and Lucas (2007) for an example. The base case model serves as exploratory analysis, sets the correlation to be zero,
and effectively orthogonalizes the transients effects. In canonical microstructure models, the correlation is positive
and identified by trade variables. For example, an unexpected buy carries both information and causes price pressure.
Section 5 provides a full model with trading variables that identify the contemporaneous correlation.

14



are from ssfpack which is an add-on package. See Koopman, Shephard, and Doornik (1999)

for additional information about related estimation procedures. The optimization procedure

follows steps designed to avoid getting stuck in local maxima. Appendix B has additional

details.

There are at least three advantages associated with using a state space model. First, max-

imum likelihood estimation is asymptotically unbiased and efficient. Second, the statistical

model offers a structural analysis that helps identify effects that would otherwise be unob-

served. After estimation, the Kalman filter offers an in-sample decomposition of price time

series into the efficient and transitory components. The decomposition is available at any

point in the sample period using past and current prices. Third, the Kalman filter helps to

deal with missing observations in a simple way and without losing information. The model

implies the differenced price series (∆pi,t) follows a MA(1) process which can be expressed as

an infinite lag autoregressive model or AR(∞). It is cumbersome to estimate such a model

if the price series has missing values. The Kalman filter in the state space model considers

the likelihood of all level series changes even if they have missing observations over multiple

periods. Methods based on differenced series do not consider such information.

Table 3 presents the base case estimates. Looking at all stocks, we see an estimated value of

849 basis points for the standard deviation of wi,t. Transitory shocks are persistent as shown

by the 0.35 value of φi. The fourth column shows the total standard deviation associated

with transitory shocks. We calculate the total as
(
σ(ε)2

1−φ2i

) 1
2

and find it is equal to 452 basis

points on average. The value of 452 basis points is key to analysis in Section 5 where we

use the value as a point of comparison for the amount of idiosyncratic volatility that can be

explained by our trading variables.

[Insert Table 3]

Table 3 shows the expected result that fundamental volatility is higher in smaller stocks. For

the smallest quintile, σ(w) is 1,059 bp; for the largest quintile, σ(w) is 691 bp. Interestingly,

the autocorrelation coefficient, φi, does not vary significantly across size quintiles.

To assess the economic importance of the (total) transitory shock, we calculate the ratio of

transitory variance to efficient price variance. Using the numbers on the top row of Table 3,

we see 4522

8492
= 28.34% suggesting price pressure is economically large at a monthly frequency.
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The finding that transitory price variance is 28.34% the magnitude of efficient price variance

at a monthly frequency represents the first empirical contribution of this paper.

4.1 Correlations of Trading and Price Variables

We use the estimated coefficients from Table 3 and a Kalman filter to extract estimated

changes to a stock’s efficient price as well as the estimated price pressure. We can also

calculate the idiosyncratic portion of a stock’s returns. We then correlate these return/price

variables with the idiosyncratic portion of specialists’ inventories and individuals’ net trades.

The Kalman filter gives the conditional expectation of stock i’s efficient price at time t. We

denote this quantity as m̂i,t = E [mi,t|Pi,t] where Pi,t represents the set containing all current

and past prices.9 We define the return (or change) of the efficient price and the price pressure

of stock i for month t as:

∆m̂i,t = E [mi,t|Pi,t]− E [mi,t−1|Pi,t−1]

ŝi,t = pi,t − m̂i,t

We calculate a correlation matrix for each stock, across five variables, using current and

lagged values, and using all 84 months of data. The five variables are: Speci,t, ∆Indvi,t,

ridioi,t , ∆m̂i,t, and ŝi,t. Appendix D provides details for all five variables.

Table 4 reports average correlation results—averaged across all stocks’ correlation matrices.

There are six main results we focus on. First, we note the negative autocorrelation of

idiosyncratic returns confirms our conjecture about transitory price deviations. The first-

order auto-correlation coefficient is -0.06 and can be found by looking in the top section of

the table labeled “All” stocks 3rd row (ridio) and under “Lag 1 month” 3rd column (ridio−1 ).

[Insert Table 4]

Second, using the -0.06 autocorrelation of ridio along with the -0.03 (unreported) second-

order autocorrelation, we can roughly calculate the implied ratio of transitory volatility

and permanent volatility. The estimate is 31.58% and compares to the estimated value of

9Additional details about the Kalman filter are provided in Appendix B.
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28.34% in the base-case state space model (see the end of the previous section.) Appendix C

provides details of our implied ratio calculation. The estimate of 31.58% is important because

its shows that, although autocorrelation coefficients appear small in magnitude (-0.06 and

-0.03), they can still explain a large fraction of permanent volatility (31.58%).

Third, individuals’ net trades are persistent as shown by the +0.31 first order autocorrelation

coefficient. As discussed earlier, the positive autocorrelation indicates individual investors

holdings do not mean-revert. To further support the finding, note that the (unreported)

second-order auto-correlation coefficient is 0.16 for ∆Indv.

Fourth, individuals’ net trades at t-1 are positively correlated with idiosyncratic returns

at time t (+0.03), net trades at time t are negative correlated with idiosyncratic returns at

time t (-0.17), and net trades at time t+1 are negatively correlated with idiosyncratic returns

at time t (-0.17). We can infer that the individual investors buy stocks when prices are falling

and sell later when prices go up. The future price rise appears smaller in magnitude (+0.03)

than the contemporaneous price fall (-0.17).

Fifth, the correlation between specialist inventories and subsequent idiosyncratic returns is

positive (0.05). The negative contemporaneous correlation between price pressure and spe-

cialist inventories (-0.09), suggests that the deviations from the specialists’ optimal inventory

positions are partially compensated by the temporary price deviation.10 There is a negative

contemporaneous correlation between efficient price change and specialist inventory (-0.23).

Sixth, the +0.07 coefficient shows that the specialists’ inventory positions at t-1 are positively

correlated with individual net trades at time t. This finding suggests that specialists (at least

partially) unwind their positions by selling to individual investors.

We finish this section by emphasizing the general take-away from Table 4: The correlations

between trading variables and price variables provide support for adding trading variables

into the state space model.

10The compensation is complex. Hendershott and Menkveld (2010) show that price pressure can slow the arrival
rate of traders which reduces the intermediarys revenues.
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5 Trading Variables and Price Decomposition

This section uses measures of specialists’ and individuals’ trading as explanatory variables

in the state space model. We begin by including only one group’s trading variables at a

time. Section 5.1 uses specialists’ trading variables and Section 5.2 uses individuals’ trading

variables. Section 5.3 ends our analysis by presenting a statistical model that simultaneously

considers both groups’ trading variables. The full state space model with both groups’

trading variables is given by:

pi,t = mi,t + si,t

mi,t = mi,t−1 + βift + wi,t

wi,t = κspeci S̃peci,t + κindvi ∆Ĩndvi,t + ui,t (4)

si,t = αspeci Speci,t + αindvi ∆Indvi,t + αDi Di,t + βi,0ft + . . .+ βi,3ft−3 + εi,t (5)

Because Table 4 shows trading variables are negatively correlated with changes to the efficient

price, we add the trading variables to the innovation of the efficient price in Equation (4).

Our goal is to avoid a potential omitted variable bias. The tilde over the first letter of a

variable indicates autocorrelation has been removed using an AR(1) regression. Appendix D

provides details.

Including trading variables in Equation (4) is important if we believe these variables may

be picking up informed trades. In this way, κspeci and κindvi help control for the possibility of

informed trading.

Table 4 also provides intuition that transitory price deviations can be explained by inventories

and net order balances. Therefore, we add specialist inventory positions and individual net

trades to the transitory prices in Equation (5). Di,t is a dummy variable which takes a value

of plus one (+1) if both Speci,t and ∆Indvit are positive and Speci,t is in the top quartile

of its distribution. Di,t takes a value of negative one (-1) if both variables are negative and

Speci,t is in the bottom quartile of its distribution. Di,t is zero (0) otherwise.

The dummy variable, Di,t, allows us to estimate interaction effects between specialists’ and

individuals’ trades. One could think of a dynamic model that is more complicated than the

one presented in Section 2 and includes autocorrelated shocks to the non-traded risk. Such
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shocks might lead investors to start a trading period with inefficient positions. Alternatively,

Di,t can be thought of as a proxy for times when funding constraints are likely to be binding.11

5.1 Specialist Trading Variables

We focus on the role of specialists’ inventories by restricting κindvi = 0 in Equation (4) and

αindvi = 0, and αDi = 0 in Equation (5).

[Insert Table 5]

Table 5 reports our estimates. For both the efficient price equation and the transitory price

equation, we report three facets of results. First, we see that κspeci = -1.08 and the negative

value indicates that specialists face adverse selection worries. Their inventories tend to be

high as price are falling and their inventories tend to be low/negative as prices are rising. We

can interpret the coefficient as the amount of fundamental price movement (in basis points)

associated with every $1,000 dollars of idiosyncratic inventory.

Second, to quantify the average effect associated with the adverse selection, we multiply the

κspeci coefficient by the standard deviation of S̃peci,t. We see the total effect is 269 bp on

average. In other words, a one standard deviation change in S̃peci,t is associated with a

2.69% change in the efficient price.

Finally, to assess the economic magnitude of 269 bp, we compare the number to the 954 bp

shown in third column. Specialists’ trading can roughly explain
(

2692

9542

)
or 7.95% of the

permanent variance.

The key parameter in Table 5 is αspeci . The estimated value of -0.25 has the conjectured

negative sign and signifies that a $100,000 deviation in a specialist’s inventory is associated

with a 0.25% transitory deviation in a given stock’s monthly price. Specialists’ inventories

are high during times of temporary negative shocks. In other words, specialists absorb

excess selling pressure and are partially compensated for providing liquidity via buying at

temporarily low prices (with the proviso noted in Footnote 10). The αspeci coefficient is

statistically significant as 263 of the 1,019 stocks produce significantly negative estimates,

683 are insignificant, and only 73 are significantly positive.
11For examples of models with funding constraints, see Gromb and Vayanos (2002) and Brunnermeier and Pedersen

(2009).
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The average transitory price pressure is 158 bp as shown in the fifth column.12 When making

cross-sectional comparisons, note that the standard deviation of specialists’ inventories is

higher for large-cap stocks than for small-cap stocks. This leads to a smaller range of values

in column 5 than the differences αspeci might lead one to believe. As the table shows, estimated

price pressure varies from 248 bp for small-cap stocks to 121 bp for large-cap stocks.

The magnitude of our price-pressure/specialists’-inventories result is larger than the related

return predictability in Hendershott and Seasholes (2007). The earlier paper sorts stocks

into quintiles based on specialists’ inventories. Stocks in the highest quintile outperform

stocks in the lowest quintile by 0.45% over the next 10 trading days. The magnitude of our

results are also greater than the comparable (daily) results in Hendershott and Menkveld

(2010) who find an average 0.49% price pressure associated with specialists’ inventories. Our

larger results suggest that there is a low frequency component to specialist inventories which

is associated with substantial price distortions.

We end by comparing price pressure explained by specialists’ inventories to the total transi-

tory price movement of 452 bp shown in Table 3. For all stocks, we estimate that specialists’

trading accounts for
(

1582

4522

)
or 12.22% of temporary price variation. The value is 30.10% for

small stocks.

5.2 Individual Trading Variables

We focus on the role of individuals’ net trades by restricting κspeci = 0 in Equation (4) and

αspeci = 0, and αDi = 0 in Equation (5).

[Insert Table 6]

Table 6 reports our estimates. We see κindvi is negative indicating that individuals’ face

adverse selection worries. While the slope coefficient is smaller in magnitude that the spe-

cialists’ coefficient (-0.09 vs. -1.08) the average effect is similar in magnitude. The second

column multiplies the slope coefficient by the standard deviation of ∆Ĩndvi,t to estimate a

268 bp effect. The 268 bp represents 8.3% of total variance calculated as 2682

9292
.

12One cannot calculate the 158 bp by multiplying the -0.25 coefficient by the standard deviation of Speci,t shown
in Table 1B due to correlation between transitory price pressure and inventory levels.
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We focus again on the αindvi parameter, which is equal to -0.06 and has the conjectured

negative sign. It is statistically significant as 264 of the 1,019 stocks estimates are significantly

negative, 692 are insignificant and only 63 are significantly positive. We interpret the results

as coming from imperfect risk sharing among individual investors who find it costly to

continuously participate in the market.

The conditional price pressure relating to individual investors (the αindvi coefficient) varies

from -0.17 for small-cap stocks to -0.01 for large-cap stocks. The average price pressure

explained by individual investors’ trades is 166 bp at a monthly frequency. The economic

magnitude is similar to what is associated with specialists. We find individuals’ net trades

explain 1662

4522
or about 13.49% of transitory price volatility (19.00% for small stocks).

The magnitude of our price-pressure/individual-net trade results is somewhat larger than

the related return predictability in Kaniel, Saar, and Titman (2008). The earlier paper sorts

stocks into deciles based on individuals’ past net trades. The authors find that the stocks in

the highest decile outperform stocks in the lowest decile by 1.25% over the next 50 trading

days. See Figure 2 of their paper. Our results may differ due to a somewhat different sample

period and/or our focus on the idiosyncratic component of individuals’ net trades.

5.3 Both Specialist and Individual Variables

Our final analysis includes both specialists’ and individuals’ trading variables in our state

space model. The relevant parts of the full statistical model are shown in Equations (4)

and (5). One goal of this section is to test whether one group’s trading variables “drives

out” the other group’s variables. Or, do trading variables from both groups combine to

explain stock price volatility?

[Insert Table 7]

Table 7 clearly shows that both groups’ trading variables play an important role in our state

space model. In the efficient price equation, both κspeci and κindvi remain negative with values

of -0.96 and -0.09. The negative values imply that κinsti > 0 indicating that institutional

traders may have value-relevant information. Both groups buy as prices are falling and both

groups tend to sell as prices are rising. The permanent volatility explained by specialists is
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246 bp while the permanent volatility explained by individuals is 259 bp. These values can

be compared to an average total permanent volatility of 930 basis points.

The transitory price equation clarifies the value of including both groups. Both αspeci and

αindvi are negative. Trades/holdings from one group do not “drive out” trades/holdings from

the other group. We see αspeci is -0.26 or 167 bp of price pressure (with 132 bp for large

stocks and 263 bp for small stocks). Also, αindvi is -0.05 or 164 bp of price pressure (with

167 bp for large stocks and 196 bp for small stocks).

While Section 2 presents a single-shock model, a fully dynamic and recursive model in which

market makers have funding constraints may lead to a non-linear relationship between price

pressure and inventories. From Table 7, we notice that the interaction coefficient, αDi , is

negative. The interaction coefficient indicates that price pressure is disproportionately large

at times that specialists’ inventories are high and individual investors are buying.

We calculate explained transitory price pressure using all the α estimates from the transitory

price equation in Table 7. We also use variance-covariance matrix of the estimated α’s

although this matrix is not reported. Shown below are results for “All” stocks.

α̂All =


αspec

αindv

αD

 =


−0.26

−0.05

−65.42


Σ̂All = Cov (α̂All)

The volatility of the explained transitory price pressure is the square root of the variance

calculated as:
(
α̂′Σ̂α̂

)0.5

= 277.93 basis points. When we look at the size quintiles, this

volatility is 379.47 bp for small stocks and 241.08 bp for large stocks. To calculate the

economic magnitude of the explained price pressure, we divide by the base-case variance of

transitory price deviations from Table 3.

α̂′Σ̂α̂

4522
=

277.932

4522
= 37.81%

The above represents the final contribution of our paper. We find specialists’ and individuals’
trading variables are 37.81% the magnitude of monthly transitory price variance. This finding

is even stronger for small stocks as 379.472

4912
= 59.73%.
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6 Conclusions

This paper provides a unified framework to better understand return dynamics, order flow

dynamics, and return-flow dynamics. We model holdings and trades of three groups of agents

(institutions, individuals, and market makers).

We begin by proposing a theoretical model with agents who differ in their risk sharing motives

and participation costs. Despite its relative simplicity, our framework produces numerous

predictions. Some predictions support existing empirical results: a) Specialists’ invento-

ries are negatively correlated with transitory price movements; b) Individuals’ net trades

are negatively correlated with transitory price movements; and c) Specialists’ inventories

are negatively autocorrelated. Some predictions are new: d) Transitory price movements

are negatively correlated with individuals’ future net trades; e) Individuals’s net trades are

positively autocorrelated; and f) Specialists’ inventories are positively correlated with indi-

viduals’ future trades.

To test theoretical predictions, we present a state space (statistical) model in which a stock’s

observable price is composed of two unobservable components. The first component repre-

sents the stock’s fundamental value while the second represents transitory price pressure.

Estimating the model with monthly CRSP prices/returns and proprietary NYSE trading

data allows us to ask: How large are transitory price deviations around fundamental values?

Using our base case state space model, we estimate that transitory price pressure accounts

for 28% of efficient price variation at a monthly frequency.

We use a Kalman filter to produce time-series estimates of the two unobservable components.

We are able to estimate correlations of efficient price changes, transitory price pressures, and

trading variables from two NYSE groups. We show specialists inventories (and individuals’

net trades) are negatively correlated with past/current returns and positively correlated with

future returns.

We add our trading variables to the state space model. The statistical framework allows us

to control for the possibility that our trading variables pick up changes in a stock’s funda-

mental value. This level of control allows us to better focus on transitory price pressure.

The state space model produces a plethora of results. For example, we find a one standard

deviation change in a specialist’s inventories (or individuals’ net trades) is associated with
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transitory volatility of 1.55% (or 1.66%). The results are larger for smaller stocks (2.48%

or 1.97%). Together, trading variables from the two groups explain 37.81% of transitory

variance (59.73% for small stocks). The large magnitudes of price distortions documented in

our paper suggest researchers need to address the biases discussed in Asparouhova, Bessem-

binder, and Kalcheva (2009).

We end by noting directions for future research. First, we could solve a fully-recursive model

with auto-correlated shocks to the non-traded risk. Second, our model could be expanded

to include a fourth investor type. Perhaps institutions could be split into two groups such as

pension funds and hedge funds. Modeling four groups would allow the statistical analysis to

include trading variables from three groups of investors. Third, we could link price pressure to

(mis)allocation of capital and the impact on investors’ welfare. All directions are interesting;

all represent considerable departures from this paper.

24



References

Asparouhova, Elena, Hendrik Bessembinder, and Ivalina Kalcheva. 2009. “Liquidity biases

in asset pricing tests.” Forthcoming Journal of Financial Economics.

Boehmer, Ekkehart, and J. Julie Wu. 2008. “Order flow and prices.” Working Paper.

Brunnermeier, Markus, and Lasse H. Pedersen. 2009. “Market liquidity and funding liq-

uidity.” The Review of Financial Studies 22(6):2201–2199.

Cheung, Ying-Wong, and Kon S. Lai. 1995. “Lag order and critical values of the augumented

Dickey-Fuller test.” Journal of Business and Economic Statistics 13(3):277–280.

Cohen, Randolph B., Paul A. Gompers, and Tuomo Vuolteenaho. 2002. “Who underreacts

to cash-flow news? Evidence from trading between individuals and institutions.” Journal

of Financial Economics 66:409–462.

Durbin, James, and Siem Jan Koopman. 2001. Time series analysis by state space model.

Oxford: Oxford University Press.

Gromb, Denis, and Dimitri Vayanos. 2002. “Equilibrium and welfare in markets with

financially constrained arbitrageurs.” Journal of Financial Economics 66:361–407.

Grossman, Sanford J., and Merton H. Miller. 1988. “Liquidity and market structure.”

Journal of Finance 43(3):617–637.

Hendershott, Terrence, and Albert J. Menkveld. 2010. “Price pressure.” Working Paper.

Hendershott, Terrence, and Mark S. Seasholes. 2007. “Market maker inventories and stock

prices.” American Economic Review 97:210–214.

Ho, Thomas, and Hans R. Stoll. 1981. “Optimal dealer pricing under transactions and

return uncertainty.” Journal of Financial Economics 9(1):47–73.

Kaniel, Ron, Gideon Saar, and Sheridan Titman. 2008. “Individual investor trading and

stock returns.” Journal of Finance 63(1):273–310.

Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. “Statistical algorithms

for models in state space using ssfpack 2.2.” Econometrics Journal 2:113–166.

Lo, Andrew W., Harry Mamaysky, and Jiang Wang. 2004. “Asset prices and trading volume

under fixed transactions costs.” Journal of Political Economy 112(5):1054–1090.

Madhavan, Ananth, and Seymour Smidt. 1993. “An analysis of daily changes in specialist

inventories and quotations.” Journal of Finance 48:1595–1628.

25



Menkveld, Albert J., Siem Jan Koopman, and Andre Lucas. 2007. “Modeling around-

the-clock price discovery for cross-listed stocks using state space models.” Journal of

Business & Economic Statistics 25:213–225.

Nofsinger, John R., and Richard W. Sias. 1999. “Herding and feedback trading by institu-

tional and individual investors.” Journal of Finance 46(6):2263.

Vayanos, Dimitri, and Jiang Wang. 2009. “Liquidity and asset prices: A unified framework.”

Working Paper.

26



A Proofs for Theoretical Framework

We start with the institutional investors (Group a) at t=2. Agents choose holdings of risky

(x̄at ) and riskfree assets (Ba
t ) to maximize the expected utility of t=3 wealth (E [U(W a

3 )])

subject to the following constraints:

W a
3 = Ba

2 + x̄a2P̃3 + (D̃3 − D̄)

W a
2 = Ba

2 + x̄a2P̃2 = Ba
1 + x̄a1P̃2

W a
1 = Ba

1 + x̄a1P̃1 = W a
0 + θP̃1

where θ represents the initial endowment of the risky asset and W a
0 represents other initial

wealth. We eliminate Ba
1 and Ba

2 from the equations above to obtain

W a
3 = W a

0 + (P̃2 − P̃1)(x̄a1 − θ) + (P̃3 − P̃2)(x̄a2 − θ) + P̃3θ + (D̃3 − D̄)

where x̄at − θ is the trader’s excess demand. Let xat ≡ x̄at − θ, we have

W a
3 = W0 + (P̃2 − P̃1)xa1 + (P̃3 − P̃2)xa2 + P̃3θ + (D̃3 − D̄) (6)

We assume that the agents have exponential utility function, i.e., U(W ) = −e−δW . By

backward induction, we solve for the optimal excess demand at t=2

max
xa2

E2

[
U
(
W2 − P2θ + (P̃3 − P2)xa2 + P̃3θ + (D̃3 − D̄)

)]
Using the exponential utility function,

E2 [U(W a
3 )] = exp

{
−δ[W2 − P2θ + (E2[D̃3]− P2)xa2 + E2[D̃3]θ + ε̃1 −

1

2
δσ2

3(xa2 + θ + 1)2]

}
The optimal value for xa2 with all means/variances conditional on the information at t=2:

xa2 =
E2[D̃3]− P2

δσ2
3

− (θ + 1)

For the individual investors, only fraction λ ∈ [0, 1] of the group participate at t=1 while

all participate at t=2. Denote the excess demand of those participating at t=1 and t=2 as

xbt(p) and the excess demand of those only participating at t=2 as xbt(np). At t=2, the excess
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demands of risky assets are:

xb2(p) = xb2(np) =
E2[D̃3]− P2

δσ2
3

− (θ − 1)

Market makers have the same utility function and initial endowment as other investor types,

but they don’t have a non-tradable endowment of wealth at t=3. Their total excess demand

at t=2 is

xm2 =
E2[D̃3]− P2

δσ2
3

− θ

The market-clearing condition at t=2 requires that the aggregate excess demand is 0:

xa2 + λxb2(p) + (1− λ)xb2(np) + xm2 = 0

i.e.,
E2[D̃3]− P2

δσ2
3

− (θ + 1) +
E2[D̃3]− P2

δσ2
3

− (θ − 1) +
E2[D̃3]− P2

δσ2
3

− θ = 0 (7)

Equation (7) gives the express for P2:

E2[D̃3]− P2

δσ2
3

= θ (8)

P2 = D̄ − ε2 − δσ2
3

The equilibrium excess demand at t=2 of each group is

xa2 = −1 (9)

λ · xb2(p) = 1 · λ

(1− λ) · xb2(np) = 1 · (1− λ)

xm2 = 0

At t=1, substitute equation (8) and (9) into (6) to get

W a
3 = W0 +

(
E2[D̃3]− θδσ2

3 − P1

)
xa1 + (P̃3 − E2[D̃3] + θδσ2

3)(−1) + P̃3θ + (D̃3 − D̄)

Solve the maximization problem of Group a and find the excess demand at t=1

xa1 =
D̄ − θδσ2

3 − P1

δσ2
2

− (θ + 1)
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Similarly, we get the excess demands of the other two groups at t=1

xb1(p) =
D̄ − θδσ2

3 − P1

δσ2
1

− (θ − 1)

xb1(np) = 0

xm1 =
D̄ − θδσ2

3 − P1

δσ2
1

− θ

Market clearing at t=1 requires

xa1 + λxb1(p) + (1− λ)xb1(np) + xm1 = 0

which gives the expression below and defines P1

D̄ − θδσ2
3 − P1

δσ2
2

= θ +
1− λ
λ+ 2

P1 = D̄ − θδ(σ2
2 + σ2

3)− 1− λ
λ+ 2

δσ2
2

and the equilibrium excess demand of the three groups at t=1 is

xa1 = −2λ+ 1

λ+ 2

λ · xb1(p) =
3λ

λ+ 2

(1− λ) · xb1(np) = 0

xm1 =
1− λ
λ+ 2

Now we determine the participation intensity λ of individual investors. Participating at
t=1 provides the ability to better hedge the non-traded risk but costs c. In equilibrium,
individual investors are indifferent between participating and not participating at t=1.

E1[U(W b
3 (p))] = exp

{
− δ[W0 + (E1[P̃2]− P1)xb1(p) + (E1[P̃3]− E1[P̃2])xb2(p) + E1[P̃3]θ − c

−1

2
δσ2

2(xb1(p) + θ − 1)2 − 1

2
δσ2

3(xb2(p) + θ − 1)2]
}

If individuals only participate at t=2, the expected utility of terminal wealth at t=1 is

E1

[
U(W b

3 (np))
]

= exp
{
− δ
(
W0 +

(
E1[P̃3]− E1[P̃2]

)
xb2(np) + E1[P̃3]θ − 1

2
δσ2

2(θ − 1)2 − 1

2
δσ2

3

(
xb2(np) + θ − 1

)2 )}
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B Likelihood Optimization

This section is referenced from Appendix B of Hendershott and Menkveld (2010). The

likelihood of the state space model described by Equations (1), (2), and (3) is optimized in

essentially three steps so as to minimize the probability of finding a local maximum. The

optimization is implemented in Ox using standard optimization routines. It uses a Kalman

filter from ssfpack which is an add-on package in Ox—see Koopman, Shephard, and Doornik

(1999).

1. An OLS regression of log price difference on contemporaneous and lagged ft yields

starting values for βi and βi,0, . . . , βi,3. See Equations (2) and (3). These β estimates

are fixed at these values until the final step.

2. The likelihood is calculated using the Kalman filter, see Durbin and Koopman (2001),

and optimized numerically using the quasi-Newton method developed by Broyden,

Fletcher, Goldfarb, and Shanno. In the optimization all parameters are free except for

the βs and (σ(ε), ϕ). The latter runs over a nine by nine grid where ϕ ranges from

0.0 to 0.8 and σ(ε) ranges from 0 to a stock-specific upper bound that is calculated

assuming that 80% of a stock’s unconditional variance is price pressure. The likelihoods

are compared across all 81 optimizations and the (σ(ε), ϕ) value that yields the highest

likelihood is kept as starting value for the final optimization. The rationale for this

step is to prevent numerical instability of the quasi-Newton optimization. That is, if

all parameters are free on arbitrary starting values the optimization routine often runs

off to a persistence parameter ϕ that approaches its upper bound of and price pressure

variance approaches the stock’s unconditional variance. The optimizer starts to load

the observed price series on two nonstationary series, i.e., the efficient price and the

price pressure, and becomes unstable.

In the state space model, the distribution of the initial state si,0 follows si,0 ∼ N(0, σ2
ε

1−φ2 )

while the distribution of mi,0 is unknown given the state is non-stationary. We follow

the convention in Durbin and Koopman (2001) to represent mi,0 as having a diffuse

prior density, i.e., a random variable with infinite variance. Some people suggest an

alternative approach which assumes that mi,0 is an unknown constant and estimate

it by maximum likelihood from the first observation pi,0. In §5.7.3 of Durbin and

Koopman (2001), they show that the diffuse initialization of the Kalman filter is the
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same as assuming that the initial state is fixed and unknown and estimating it from

the first observation for the general linear Gaussian state space model. The reason for

adopting diffuse initialization is that it is more efficient than the other approach in

computation—see §5.7.5 of Durbin and Koopman (2001).

3. The likelihood is optimized where all parameters are free and starting values for: βi,

βi,0, . . . , βi,3, σ(ε), ϕ are equal to those found in steps 1 and 2.

This procedure proves numerically stable as we have strong convergence in the likelihood

optimization for all of our stock-year samples, i.e., convergence both in (i) the likelihood

elasticity with respect to its parameters and (ii) the one-step change in parameter values.

They both become arbitrarily small.
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C Estimating the Magnitude of Transitory Volatility

If the transitory price follows st = φst−1 + εt, the first and second order autocorrelation of

midquote return are:

ρ1 =
−(1− φ) · σ(ε)2

(1 + φ) · σ(w)2 + 2σ(ε)2

ρ2 =
−φ(1− φ) · σ(ε)2

(1 + φ) · σ(w)2 + 2σ(ε)2

The implied ratio of transitory volatility over permanent volatility is:

σ(ε)2

1−φ2

σ(w)2
= − ρ3

1

(ρ1 + 2ρ2
1 − ρ2)(ρ1 − ρ2)

= − (−0.06)3

(−0.06 + 2(−0.06)2 + 0.03)(−0.06 + 0.03)

= 31.58%
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D Variable Definitions

** Indicates a variable used throughout the paper.

* Indicates a variable used infrequently in Tables 2 to 7.

Price Variables:

Pi,t Price of stock i, in dollars, at the end of month t.

P i Average price of stock i, in dollars, over the sample period.

plni,t Natural log of stock i’s price at the end of month t.

** pi,t Adjusted price of stock i’s after subtracting its required return.

Defined as: pi,t = plni,t − δi,t where δi,t is defined below.

m̂i,t Estimate of the efficient price from the Kalman filter: m̂i,t = E [mi,t|Pi,t]
where Pi,t is the set containing all current and past prices.

* ŝi,t Estimate of the transitory price pressure: ŝi,t = pi,t − m̂i,t.

Market Capitalizations and Weights:

MktCapi,t Market capitalization of stock i, in dollars, at the end of month t.

MktCapi Average market cap.n of stock i, in dollars, over the sample period.

ωi,t Weight of stock i in our “market” of 1,019 stocks: ωi,t = MktCapi∑N
i=1MktCapi

.

Return Variables:

ri,t Return of stock i’s over month t: ri,t = plni,t − plni,t−1.

rf,t Return of riskfree rate over month t and from Ken French’s website.

rstdi,t Standardized return of stock i’s over month t: rstdi,t =
ri,t−ri,t
std(ri,t)

.

rt Market-wide return or common factor. Equal to: rt =
∑

i ωi,tr
std
i,t .

** ft Innovation in market-wide returns. Defined as: ft = ξt

from the regression: rt = α + φ1rt−1 + φ2rt−2 + φ3rt−3 + φ4rt−4 + ξt.

* ridioi,t Idiosyncratic portion of stock i’s return. Defined as: ridioi,t = ξi,t

from the regression: ri,t = α + φ0ft + . . .+ φ4ft−4 + ξi,t.

* ∆m̂i,t Return of the estimated efficient (unobservable) price.

Defined as: ∆mi,t = E [mi,t|Pi,t]− E [mi,t−1|Pi,t−1].
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Required Return Adjustment:

Step 1: Do a fixed-effects panel regression with all 1,019 stocks using the whole

sample period: ri,t = α + β0ft + β1ft−1 + β2ft−2 + β3ft−3 + β4ft−4 + εi,t.

Step 2: Do a stock-by-stock regression of the form:

ri,t = αi + βi,0ft + βi,1ft−1 + βi,2ft−2 + βi,3ft−3 + βi,4ft−4 + εi,t.

Step 3: Calculate stock i’s beta as: βi =
∑4
j=0 βi,j∑4
j=0 βj

.

Step 4: Calculate the required return as: δi,t = rf,t + βi

(
1.06

1
12 − 1

)
.

Specialists’ Inventory Variables:

Specshi,t Specialist’s inventory (in shares) of stock i at the end of month t.

Spec$
i,t Specialist’s inventory (in dollars) of stock i at the end of month t

Defined as: Spec$
i,t = Specshi,t × P i.

Specstdi,t Standardized value of specialist’s inventory of stock i’s at the

end of month t. Defined as: Specstdi,t =
Spec$i,t−Spec

$
i,t

std(Spec$i,t)
.

γSpect Common (market-wide) inventory factor at the end of month t.

Defined as: γSpect =
∑

i ωi × Specstdi,t .

** Speci,t Idiosyncratic part of specialist’s inventory. Defined as: Speci,t = εi,t

from the regression: Spec$
i,t = α + β · γSpect + εi,t.

* ∆Speci,t Defined as: Speci,t − Speci,t−1.

* S̃peci,t Defined as the residual from an AR(1): S̃peci,t = εi,t

from the regression Speci,t = φ0 + φ1Speci,t−1 + εi,t.
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Individuals’ Trading Variables:

Indvshi,t Individuals’ inventories/holdings (in shares) of stock i at the end of

month t. Assumed to be zero at the beginning of the sample period.

Indv$
i,t Individuals’ inventories/holdings (in dollars) of stock i at the

end of month t. Defined as: Indv$
i,t = Indvshi,t × P i.

∆Indv$
i,t Individuals’ net trading (in dollars) of stock i’s at the end

of month t. Defined as: ∆Indv$
i,t = Indv$

i,t − Indv$
i,t−1.

Indvstdi,t Standardized value of Individuals’ inventories/holdings of stock i at

the end of month t. Defined as: Indvstdi,t =
Indv$i,t−Indv

$
i,t

std(Spec$i,t)
.

γIndvt Common (market-wide) inventory factor at the end of month t.

Defined as: γIndvt =
∑

i ωi × Indvstdi,t .

∆γIndvt Net trading of common factor over month t: ∆γIndvt = γIndvt − γIndvt−1 .

* Indvi,t Idiosyncratic part of individuals’ inventory. Defined as: Indvi,t = εi,t

from the regression: Indv$
i,t = α + β · γIndvt + εi,t.

** ∆Indvi,t Idiosyncratic part of net trades. Defined as: ∆Indvi,t = εi,t

from the regression ∆Indv$
i,t = α + β ·∆γIndvt + εi,t.

Ĩndvi,t Defined as the residual from an AR(1): Ĩndvi,t = εi,t

from the regression: Indvi,t = φ0 + φ1Indvi,t−1 + εi,t.

* ∆Ĩndvi,t Defined as the residual from an AR(1): ∆Ĩndvi,t = εi,t

from the regression: ∆Indvi,t = φ0 + φ1∆Indvi,t−1 + εi,t.

Interaction of Specialists’ and Individuals’ Trading:

* Di,t = +1 if Speci,t > 0, ∆Indvi,t > 0, and Speci,t ∈ Q1

= −1 if Speci,t < 0, ∆Indvi,t < 0, and Speci,t ∈ Q4

= 0 otherwise

Q1 and Q4 represent the hi/lo quartiles of Speci,t’s distribution.
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Table 2: Augmented Dickey-Fuller Tests

This table presents results of augmented Dickey-Fuller tests. We report the cross-sectional mean of the β coefficient.
Below the coefficients, and in parentheses, we report the cross-sectional means of the associated t-statistics. We
consider variables from specialists and individuals:

∆Speci,t = α+ βSpeci,t−1 + φ1∆Speci,t−1 + . . .+ φ4∆Speci,t−4 + εi,t

∆Indvi,t = α+ βIndvi,t−1 + φ1∆Indvi,t−1 + . . .+ φ4∆Indvi,t−4 + εi,t

The p-values, reported in square brackets, are based on a test statistic that counts the number of significant augmented

Dickey-Fuller test statistics across all stocks estimates in the bin. The test statistic is binomial distributed under

the null (we use the 0.10 or 0.90 critical values from the DF-test). The data are monthly starting January 1999 and

ending December 2005.

Specialists Individuals

All β-Avg -0.782 -0.019
T-Avg (-3.52) (-0.82)
P-value [0.00] [1.00]

Q1 (Small) β-Avg -0.606 -0.023
T-Avg (-3.28) (-0.95)
P-value [0.00] [0.95]

Q2 β-Avg -0.815 -0.020
T-Avg (-3.64) (-0.84)
P-value [0.00] [0.99]

Q3 β-Avg -0.830 -0.018
T-Avg (-3.62) (-0.83)
P-value [0.00] [0.99]

Q4 β-Avg -0.846 -0.020
T-Avg (-3.60) (-0.86)
P-value [0.00] [0.99]

Q5 (Large) β-Avg -0.813 -0.014
T-Avg (-3.44) (-0.62)
P-value [0.00] [0.99]

# of Obs: N × T = 1,019 × 84 = 85,586
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Table 3: Base Case State Space Model

This table reports estimates from the base case state space model. The first equation shows the observable log
price (pit). The second equation show the unobserved efficient price (mi,t). The third equation shows the the
unobserved transitory price deviations (si,t).

pi,t = mi,t + si,t

mi,t = mi,t−1 + βift + wi,t

si,t = φisi,t−1 + βi,0ft + . . .+ βi,3ft−3 + εi,t

Data are monthly starting January 1999 and ending December 2005. The table reports p-values in parentheses. These
p-values are based on a test statistic that counts the number of significant t-values across all stocks in the bin. The
test statistic is binomially distributed under the null. In the t-test, we use the 0.10 critical value if the cross-sectional
mean is negative and the 0.90 critical value if the cross-sectional mean is positive.

σ(w) φi σ(ε)
(
σ(ε)2

1−φ2
i

) 1
2

All 849 0.35 324 452
(0.000) (0.000) (0.000) (0.000)

Q1 (Small) 1,059 0.33 365 491
(0.000) (0.000) (0.000) (0.000)

Q2 913 0.35 345 508
(0.000) (0.000) (0.000) (0.000)

Q3 790 0.34 348 466
(0.000) (0.000) (0.000) (0.000)

Q4 788 0.41 275 407
(0.000) (0.000) (0.000) (0.000)

Q5 (Large) 691 0.34 288 389
(0.000) (0.000) (0.000) (0.000)

# of Obs: N × T = 1,019 × 84 = 85,586
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Table 4: Correlations of Trading and Price Variables

This table presents correlations of idiosyncratic inventories of NYSE specialists (Speci,t), individuals’ net trades

(∆Indvi,t), the idiosyncratic part of monthly returns (ridioi,t ), estimated price pressures (ŝi,t), and the returns/changes

to the estimated efficient price (∆m̂i,t). A full description of all variables is given in the text and in Appendix D.

Efficient prices and price pressure are estimated by a Kalman filter using the statistical base-case model shown in the

text. Correlations are calculated on a stock-by-stock basis using the entire January 1999 to December 2005 sample

period. The table shows average matrices (across stocks). p-values are reported in parentheses and are based on a

test statistic that counts the number of significant t-values across all stocks estimates in the bin. The test statistic

is binomially distributed under the null. In the t-test, we use the 0.10 critical value if the cross-sectional mean is

negative and the 0.90 critical value if the cross-sectional mean is positive.

Lag 1 month Contemporaneous Fwd 1 month
Spec−1 ∆Indv−1 ridio−1 Spec ∆Indv ridio Spec+1 ∆Indv+1 ridio+1

All

Spect 0.15 1.00 0.15
(0.000) (0.000) (0.000)

∆Indvt 0.07 0.31 0.05 1.00 0.01 0.31
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ridiot 0.05 0.03 -0.06 -0.22 -0.17 1.00 -0.04 -0.17 -0.06
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ŝt -0.06 -0.08 0.07 -0.09 -0.12 0.18 0.01 -0.06 -0.06
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆m̂t 0.04 0.03 0.01 -0.23 -0.17 0.83 -0.05 -0.18 -0.06
(0.000) (0.000) (0.710) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q1 (Small)

Spect 0.30 1.00 0.30
(0.000) (0.000) (0.000)

∆Indvt 0.12 0.32 0.07 1.00 0.03 0.32
(0.000) (0.000) (0.000) (0.000) (0.168) (0.000)

ridiot 0.04 0.05 -0.06 -0.30 -0.13 1.00 -0.08 -0.19 -0.06
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ŝt -0.09 -0.10 0.07 -0.11 -0.13 0.17 0.01 -0.09 -0.06
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.021) (0.000) (0.054)

∆m̂t 0.03 0.05 0.01 -0.30 -0.12 0.88 -0.09 -0.19 -0.06
(0.000) (0.000) (0.994) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q2

Spect 0.12 1.00 0.12
(0.000) (0.000) (0.000)

∆Indvt 0.08 0.28 0.06 1.00 0.02 0.28
(0.000) (0.000) (0.000) (0.000) (0.013) (0.000)

ridiot 0.06 0.04 -0.04 -0.25 -0.17 1.00 -0.05 -0.17 -0.04
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ŝt -0.05 -0.08 0.07 -0.11 -0.12 0.19 -0.00 -0.06 -0.08
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.175) (0.000) (0.000)

∆m̂t 0.04 0.04 0.02 -0.26 -0.16 0.84 -0.05 -0.19 -0.05
(0.000) (0.000) (0.175) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

< continued on next page >
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< continued from previous page >

Lag 1 month Contemporaneous Fwd 1 month
Spec−1 ∆Indv−1 ridio−1 Spec ∆Indv ridio Spec+1 ∆Indv+1 ridio+1

Q3

Spect 0.12 1.00 0.12
(0.000) (0.000) (0.000)

∆Indvt 0.05 0.28 0.03 1.00 0.01 0.28
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

ridiot 0.06 0.03 -0.06 -0.19 -0.16 1.00 -0.02 -0.16 -0.06
(0.000) (0.388) (0.000) (0.000) (0.000) (0.000) (0.081) (0.000) (0.000)

∆ŝt -0.06 -0.08 0.09 -0.09 -0.13 0.19 0.02 -0.06 -0.07
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.004)

∆m̂t 0.05 0.03 0.00 -0.21 -0.16 0.81 -0.03 -0.17 -0.07
(0.000) (0.817) (0.817) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Q4

Spect 0.11 1.00 0.11
(0.000) (0.000) (0.000)

∆Indvt 0.07 0.32 0.05 1.00 0.01 0.32
(0.000) (0.000) (0.000) (0.000) (0.081) (0.000)

ridiot 0.04 0.02 -0.04 -0.20 -0.19 1.00 -0.04 -0.18 -0.04
(0.002) (0.054) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ŝt -0.05 -0.07 0.06 -0.08 -0.10 0.15 0.02 -0.04 -0.06
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.921) (0.000) (0.081)

∆m̂t 0.03 0.02 0.01 -0.21 -0.19 0.81 -0.05 -0.19 -0.05
(0.021) (0.000) (0.388) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q5 (Large)

Spect 0.11 1.00 0.11
(0.000) (0.000) (0.000)

∆Indvt 0.05 0.36 0.04 1.00 -0.00 0.36
(0.000) (0.000) (0.000) (0.000) (0.011) (0.000)

ridiot 0.04 0.03 -0.07 -0.17 -0.22 1.00 -0.03 -0.16 -0.07
(0.000) (0.048) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000)

∆ŝt -0.04 -0.07 0.05 -0.07 -0.12 0.18 0.00 -0.03 -0.05
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.109) (0.001) (0.011)

∆m̂t 0.04 0.03 0.01 -0.18 -0.22 0.79 -0.03 -0.16 -0.07
(0.000) (0.000) (0.370) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

# of Obs: N × T = 1,019 × 84 = 85,586
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Table 5: State Space Model with NYSE Specialists’ Inventories

This table presents estimates from a state space model that includes NYSE specialists’ inventories and is shown
below. pi,t is the observable log price of stock i at the end of month t. mi,t is the unobservable efficient price. si,t is
the unobservable transitory price deviation.

pi,t = mi,t + si,t

mi,t = mi,t−1 + βift + wi,t

wi,t = κspeci S̃peci,t + ui,t

si,t = αspeci Speci,t + βi,0ft + . . .+ βi,3ft−3 + εi,t

Full descriptions and definitions of variables are given in Appendix D. The model is estimated on a stock-by-stock basis
using maximum likelihood estimates where the error terms uit and εi,t are assumed to be normally and independently
distributed. The optimization is implemented in Ox with ssfpack routines. A Kalman filter is used to evaluate the
likelihood function. The table reports p-values in parentheses. These values are based on a test statistic that counts
the number of significant t-values across all stocks. The test statistic is binomially distributed under the null. In the
t-test, we use the 10% percentile if the cross-sectional mean is negative and the 90% percentile if the cross-sectional
mean is positive.

Efficient Price Equation Transitory Price Equation

κspeci |κspeci | · σ(S̃pec) σ(w) αspeci |αspeci | · σ(Spec) σ(ε)

All -1.08 269 954 -0.25 158 159
(0.000) (0.000)

Q1 (Small) -3.16 441 1,171 -0.50 248 181
(0.000) (0.000)

Q2 -1.08 281 1,025 -0.38 170 155
(0.000) (0.000)

Q3 -0.53 212 909 -0.24 125 158
(0.000) (0.000)

Q4 -0.44 226 893 -0.09 124 133
(0.000) (0.000)

Q5 (Large) -0.16 183 769 -0.05 121 169
(0.000) (0.000)

# of Obs: N × T = 1,019 × 84 = 85,586
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Table 6: State Space Model with Individuals’ Net Trades

This table presents estimates from a state space model that includes individuals’ net trades and is shown below.
pi,t is the observable log price of stock i at the end of month t. mi,t is the unobservable efficient price. si,t is the
unobservable transitory price deviation.

pi,t = mi,t + si,t

mi,t = mi,t−1 + βift + wi,t

wi,t = κindvi ∆Ĩndvi,t + ui,t

si,t = αindvi ∆Indvi,t + βi,0ft + . . .+ βi,3ft−3 + εi,t

Full descriptions and definitions of variables are given in Appendix D. The model is estimated on a stock-by-stock basis
using maximum likelihood estimates where the error terms ui,t and εi,t are assumed to be normally and independently
distributed. The optimization is implemented in Ox with ssfpack routines. A Kalman filter is used to evaluate the
likelihood function. The table reports p-values in parentheses. These values are based on a test statistic that counts
the number of significant t-values across all stocks. The test statistic is binomially distributed under the null. In the
t-test, we use the 10% percentile if the cross-sectional mean is negative and the 90% percentile if the cross-sectional
mean is positive.

Efficient Price Equation Transitory Price Equation

κindvi |κindvi | · σ(∆Ĩndv) σ(w) αindvi |αindvi | · σ(∆Indv) σ(ε)

All -0.09 268 929 -0.06 166 227
(0.000) (0.000)

Q1 (Small) -0.22 267 1,123 -0.17 197 269
(0.000) (0.000)

Q2 -0.11 268 1,000 -0.06 176 241
(0.000) (0.000)

Q3 -0.06 252 878 -0.03 133 234
(0.000) (0.000)

Q4 -0.04 282 880 -0.01 157 187
(0.000) (0.000)

Q5 (Large) -0.01 271 762 -0.01 164 203
(0.000) (0.000)

# of Obs: N × T = 1,019 × 84 = 85,586

43



T
a
b
le

7
:
S
ta

te
S
p
a
c
e
M

o
d
e
l
w
it
h

B
o
th

S
p
e
c
ia
li
st
s
a
n
d

In
d
iv
id
u
a
ls

T
h
is

ta
b
le

p
re

se
n
ts

es
ti

m
a
te

s
fr

o
m

a
st

a
te

sp
a
ce

m
o
d
el

th
a
t

in
cl

u
d
es

N
Y

S
E

sp
ec

ia
li
st

s’
in

v
en

to
ri

es
a
n
d

in
d
iv

id
u
a
ls

’
n
et

tr
a
d
in

g
.
p
i,
t

is
th

e
o
b
se

rv
a
b
le

lo
g

p
ri

ce
o
f

st
o
ck
i

a
t

th
e

en
d

o
f

m
o
n
th
t.
m
i,
t

is
th

e
u
n
o
b
se

rv
a
b
le

effi
ci

en
t

p
ri

ce
.
s i
,t

is
th

e
u
n
o
b
se

rv
a
b
le

tr
a
n
si

to
ry

p
ri

ce
d
ev

ia
ti

o
n
.

p
i,
t

=
m
i,
t

+
s i
,t

m
i,
t

=
m
i,
t−

1
+
β
i
f t

+
w
i,
t

w
i,
t

=
κ
s
p
e
c

i
S̃
p
ec
i,
t

+
κ
in
d
v

i
∆
Ĩ
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