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Abstract

Liquidity risk should only matter to investors insofar as they have to trade.
The investment horizon should therefore be taken into account in the analysis of
liquidity risk. We study both the theoretical and empirical asset pricing impli-
cations of allowing for heterogeneous holding periods in a setting where investors
face stochastic illiquidity costs. More specifically, we extend the liquidity-adjusted
CAPM of Acharya and Pedersen (2005) to a multi-period setting by introducing
a new class of investors with longer investment horizons. We study two baseline
cases: one setting with full integration, where all investors hold all assets. A second
setting features market segmentation, where short-term investors only invest in as-
sets with low transaction costs. Our theoretical framework offers many insights to
characterize the sources of the liquidity premium.

∗We thank the Duisenberg School of Finance for providing financial support.



1 Introduction

The investment horizon is one of the most important features that determine asset
allocation strategies. With time-varying investment opportunities, the pioneering work of
Merton (1971) theorizes that the portfolio choices of multi-period investors can differ from
that of a single-period investor because of hedging demands whose magnitude depends
on the investment horizon of the investor. Recent asset pricing research has built on this
insight to demonstrate that multi-period decisions differ substantially from single-period
decisions in different model specifications (e.g., Campbell and Viceira, 1996; Balduzzi
and Lynch, 1997; Brandt, 1999).

Different portfolio rules for different horizons imply different trading schemes. In
particular, liquidity plays a different role for investors with different horizons insofar as
trading costs only matter when trading actually takes place. The investment horizon
becomes then a key element in the analysis of liquidity.

We explicitly take this standpoint and model a continuum of investors with hetero-
geneous investment horizons, with stochastic illiquidity costs. Specifically, our model
features investors with short and long investment horizons. These latter investors are
less concerned about trading costs because they do not trade every period. Furthermore,
the longer investment horizon allows to earn larger risk premia that can potentially cover
the higher trading costs of the more illiquid assets.

Previous theories of liquidity and asset prices have largely ignored investors’ horizon,
with the exception of the seminal paper of Amihud and Mendelson (1986), who study
the existence of clienteles that have different liquidity preferences in a setting where
transaction costs are constant. However, there is large empirical evidence that liquidity
is time-varying. The most influential asset pricing model with liquidity risk, Acharya
and Pedersen (2005), features stochastic transactions costs, but includes only one type of
investors trading every period. Our paper bridges these two seminal papers, because our
model entails different clienteles, as in Amihud and Mendelson (1986), with stochastic
illiquidity, as in Acharya and Pedersen (2005).

This theoretical setup delivers a number of novel and interesting predictions. In an
equilibrium where all investors trade all assets (integration), the existence of clienteles
with longer investment horizons reduces the importance of liquidity risk relative to the
standard CAPM market risk compared to a setting where all investors trade every period.
More specifically, the relative importance of the two risk premiums depends crucially on
the risk aversion of long-term versus short-term investors. For example, if long-term
investors are more risk-averse, liquidity risk becomes more important because short-term
investors, who care more about liquidity, hold a relatively larger fraction of the asset
supply in equilibrium.

Another important prediction of this setup is that, given that some investors do not
trade every period, the effect of expected liquidity is also smaller and it varies in the
cross-section of stocks according to the covariance between returns and illiquidity costs.
In an equilibrium where short-term investors do not invest in some more illiquid assets
(partial segmentation), our model shows that expected stock returns contain again a
larger proportion of market risk premiums relative to liquidity risk premium, plus an
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additional component reflecting the extent of supply for the segmented asset. The effect
of expected liquidity on returns is naturally larger for the assets that are traded by all
investors. In this setup, an increasing and concave relationship between expected returns
and trading costs arises naturally, since excessive trading costs exclude the clientele that
is more sensitive to liquidity costs.

These theoretical predictions are borne out in the empirical estimation. Specifically,
we explore the cross-sectional predictions of the model using U.S. stocks over the period
1962 to 2004. We use the illiquidity measure of Amihud (2002) to proxy for liquidity
costs. We find that our heterogeneous-horizon asset pricing model fares better than a
standard or a liquidity-adjusted CAPM, both in terms of R-squared for cross-sectional
returns and p-values in specification tests.

Our empirical results contribute to a rich literature that has shown the asset pricing
implications of liquidity and liquidity risk. Amihud (2002) finds that stock returns are
increasing in the level of illiquidity both in the cross-section (consistent with Amihud
and Mendelson, 1986) and in the time-series. Pástor and Stambaugh (2003) show that
the sensitivity of stock returns to aggregate liquidity is priced. Acharya and Pedersen
(2005) integrate these effects into a liquidity-adjusted CAPM that performs better empir-
ically than the standard CAPM. Acharya and Pedersen (2005) demonstrate that liquidity
matters for asset pricing in the sense that a liquidity-adjusted CAPM performs better
than the standard CAPM. The liquidity-adjusted CAPM is such that, in addition to the
standard CAPM effects, the return on a security increases with the level of illiquidity
and is influenced by three different sources of liquidity risks. These liquidity risks may
be summarized as follows: investors require compensation for holding a security that
on average is illiquid when the market is illiquid; investors are willing to accept a lower
return on a security that provides a high return when the market is illiquid; and willing
to accept a lower return on a security that is liquid when the market return is low.

Furthermore, our paper is also related to research showing the relations between
liquidity and investors’ holding periods. For example, Chalmers and Kadlec (1998) find
evidence that it is not the spread, but the amortized spread that is more relevant as
a measure of transaction costs, as it takes into account the length of investors’ holding
periods. Cella, Giannetti, Ellul (2011) demonstrate that investors’ short horizons amplify
the effects of market-wide negative shocks.

The remainder of the paper is organized as follows. Section 2 illustrates our multi-
period liquidity CAPM in the most intuitive setting with two investment horizons (one-
period and two-periods) and two assets. Section 3 generalizes the model to arbitrarily
many investment horizons and assets. We describe our estimation methodology in Section
4. Section 5 illustrates the data and Section 6 presents our empirical findings. We
conclude with a summary of our findings in Section 7.

2 A Two-Period Two-Assets Liquidity-CAPM

In this section we present a simple version of our asset pricing model, with two investor
types and two assets. Asset i pays a dividend Di and selling the asset costs Ci. The first
investor type has a one-period horizon and mean-variance preferences with risk-aversion
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A1. At time t, these one-period agents solve a maximization problem where they choose
the quantity of stocks purchased y1t (a vector with one element for each asset) to maximize
utility

max
y1t

(Et(Wt+1)− 1

2
A1Vt(Wt+1)) (1)

Wt+1 = (Pt+1 +Dt+1 − Ct+1)′y1t + rf (e1 − P ′ty1t),

where Wt+1 is wealth at time t+ 1, Pt+1 is the vector of prices, and e1 is the endowment.
The two-period investors are also mean-variance optimizers, but care about their

wealth two periods ahead. For simplicity, we do not allow these two-period agents to
rebalance after one period. In essence, we assume that rebalancing trades of long-term
investors are relatively small and can be ignored. The utility maximization is then given
by

max
y2t

(Et(Wt+2)− 1

2
A2Vt(Wt+2)) (2)

Wt+2 = (Pt+2 +Dt+1 +Dt+2 − Ct+2)′y2t + rf (Dt+1 + rf (e2 − P ′ty2t)).

We assume that two one-period investors and one two-period investor enter the market
in each period. Also, for simplicity, we assume that both dividends and costs are i.i.d.
Then, given that demand is independent of wealth, given a fixed asset supply, and with the
same type of investors entering the market each period, we obtain a stationary equilibrium
where the price of each asset Pi will be constant over time. At any point in time, the
market clears with new investors buying the supply of stocks minus the amount held by
the two-period investor that entered the market one period ago,

2y1t + y2t = S − y2,t−1, (3)

where S is vector with supply of assets (in amount of each of the assets). Given the i.i.d.
setting, we have constant demand over time, y1t = y1,t−1 and y2t = y2,t−1.

Below, we work out the equilibrium expected returns for various cases. To set the
stage, we start studying the case where all investors have the same horizon. Then we
allow for horizon heterogeneity, and consider two potential equilibria. In the first case
(integration), both investors have strictly positive holdings in both assets. In the second
case (partial segmentation), the short-term investor only invests in the asset with low
transaction costs (i.e., his optimal position in the high-cost asset is equal to zero, since
the transaction costs prevent this investor from buying or selling the asset).

2.1 Case 0, homogeneity : both investors have the same horizon

If all investors have the same one-period horizon, we obtain Acharya and Pedersen’s
liquidity CAPM. This can be seen as follows. The optimal demand of the investor is

y1 =
1

A1

diag(Pt)
−1V ar(rt+1 − ct+1)−1(E(1 + rt+1 − ct+1)− rf ) (4)
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where r denotes the asset return and c the percentage costs, ct(i) = Ct(i)/Pt(i). Solving
the equilibrium condition 2y1t = S, with two investors entering the market each period,
gives

E(1 + rt+1)− rf = E(ct+1) +
A1

2
S̃ ′ιCov(rt+1 − ct+1, rm,t+1 − cm,t+1) (5)

where S̃ = diag(Pt)S is dollar supply (which is constant over time given that prices are

constant over time), and where rm = S̃ ′r/S̃ ′ι.
Alternatively, if all investors are two-period investors (with a new two-period investor

entering the market each period), the Appendix shows that the optimal demand is

y2 =
1

A2

diag(Pt)
−1V ar(rt+1 + rt+2 − ct+2)−1(E(1 + rt+1 + rt+2 − ct+2)− r2

f ) (6)

Using the equality V ar(rt+1+rt+2−ct+2) = V ar(rt+1)+V ar(rt+2−ct+2), valid in our i.i.d.
setting, and the approximation r2

f ≈ 2rf−1, the market clearing condition y2t = S−y2,t−1

leads to the equilibrium expected returns,

E(1+rt+1)−rf =
1

2
E(ct+1)+

A2

4
S̃ ′ι(Cov(rt+1, rm,t+1)+Cov(rt+1− ct+1, rm,t+1− cm,t+1)).

(7)
Comparing equilibrium expected returns in equation (7) to the one-period case in equation
(5), we observe that the coefficient on expected liquidity decreases from 1 to 1/2, due
to the longer horizon. In addition, the role of liquidity risk is smaller, given that the
first-period return is not affected by liquidity costs.

2.2 Case 1, integration : both investors invest in both assets

We now turn to the case with heterogeneous horizons. We first consider the case
where the optimal demands y1 and y2 are strictly positive, so that both investor types
have positive holdings of both assets. This corresponds to a situation where the liquidity
costs are sufficiently small. Using the market clearing condition (3) and optimal demands
in (4) and (6), the Appendix derives the equilibrium expected returns

E(1 + r)− rf = ΦE(c) + (λ1 + λ2)Cov(r − c, rm − cm) + λ2Cov(r, rm) (8)

Φ = γ1I − γ2(V (r − c)−1V (r) + I)−1 (9)

where we suppress all time subscripts given the i.i.d. nature of the equilibrium and where
λ1, λ2, γ1, and γ2 are scalars that are functions of the risk aversion levels and covariance
matrices of returns and costs (see the Appendix). The Appendix shows that λ1 > 0,
λ2 > 0, γ1 > 0 and γ2 > 0.

Equation (8) shows that for the risk premium term one gets a mixture of the net-of-cost
covariance and the regular CAPM covariance. This makes intuitive sense: the presence
of long-term investors implies that investors care more about regular market risk and
relatively less about liquidity risk. The weights on these two covariances depend, amongst
others, on the risk aversion of the one-period and two-period investors. For example, in
the Appendix we show that as the long-term investors become relatively more risk averse
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(or short-term agents become less risk averse), the liquidity risk covariance becomes
more important relative to the market covariance (formally λ1+λ2

(λ1+λ2)+λ2
↑ as A2/A1 ↑).

This makes intuitive sense. When long-term investors are more risk averse (or short-
term investors less risk averse), the long-term investors hold a relatively smaller fraction
of the supply in equilibrium, and hence the demand of the short-term investors is the
predominant factor determining expected returns. Since short-term investors care more
about liquidity risk, the liquidity risk premium becomes relatively more important in
equilibrium.

Next, we turn to loading on expected liquidity, as defined by the matrix Φ in equation
(9). This term contains two important insights. First, if there is no liquidity risk (V (c) =
0) we obtain V (r − c)−1V (r) = I, and the effect of expected liquidity is the same for
both assets and equal to γ1 − 1

2
γ2. The Appendix shows that γ1 − 1

2
γ2 < 1, so that the

coefficient on expected liquidity is smaller than 1 (which is the coefficient in the baseline
one-period model in Section 2.1), due to the presence of two-period investors that care
less about expected liquidity.

If V (c) > 0, the coefficients on expected liquidity may vary across the two assets due
to covariance between costs and returns. This reflects the fact that short-term investors
care more about liquidity risk covariances than long-term investors.

For example, suppose the second asset has no liquidity risk (V (c2) > 0), while the first
asset has liquidity risk (V (c1) > 0). In addition, suppose that for asset 1, Cov(r1, c1) < 0,
so that V (r1− c1) > V (r1). The first asset is then less attractive for short-term investors
since high costs coincide with low returns, while this liquidity risk is less important for
long-term investors. It then follows directly that the expected liquidity matrix Φ is
diagonal, with the coefficient on expected liquidity for asset 2 is equal to Φ2,2 = γ1− 1

2
γ2,

while for asset 1 we obtain

Φ1,1 = γ1 −
1

1 + V (r1)/V (r1 − c1)
γ2 < Φ2,2 (10)

It thus follows that for asset 1 the coefficient on expected liquidity is smaller than for
asset 2: since the first asset is relatively less attractive for short-term investors, it will be
held in equilibrium mostly by long-term investors that care less about liquidity, leading to
a smaller coefficient for the expected liquidity effect. Hence, we see that higher liquidity
risk may actually lead to a smaller expected liquidity premium.

2.3 Case 2, partial segmentation : only the long-term investor
invests in both assets

We now turn to the case where the costs on one asset are so high that, in equilibrium,
the one-period investors optimally invest only in the low-cost asset and have a zero
position in the high-cost asset. Suppose asset 1 has higher costs than asset 2. In fact,
costs are so high that, in equilibrium, y1(1) < 0 (and y1(2) > 0). This means that short-
term investors do not want to buy asset 1. Of course, it is still possible that the investor
wants to short asset 1, but this is unlikely given the high transaction costs. To see this
formally, if the optimal position in asset 1 were negative (and positive for asset 2), the
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optimal portfolio would be

z1 =
1

A1

diag(Pt)
−1V ar(rt+1 − δ1ct+1)−1(E(1 + rt+1 − δ1ct+1)− rf ) (11)

where δ1 = diag(−1, 1), hence δ1 is a diagonal matrix with elements equal to 1 if the
investor is long in the respective asset, and -1 if he is short (see Bongaerts, De Jong, and
Driessen, 2011). If z1(1) < 0, this is indeed the solution to the optimal portfolio rule, but
this is unlikely if costs are high for this asset. In turn, if z1(1) > 0 and y1(1) < 0, it is
optimal for the investor to have zero position in asset 1. We thus focus here on the case
in which costs are high enough so that the investor has a zero position in asset 1.

This simplifies the optimal allocation of agent 1,

ỹ1 =

(
0

1
A1
V ar(r2 − c2)−1(E(1 + r2 − c2)− rf )

)
(12)

The demand of agent 2 is unchanged from above. Appendix XX derives the equilibrium
expected returns,

E(1 + r)− rf = Λ−1
1 Λ2E(c) + φ1(Cov(r, rm) + Cov(r − c, rm − cm)) +

(
φ2S̃1

0

)
(13)

Λ1 = A−1
1

(
0 0
0 V (r2 − c2)−1

)
+ 2A−1

2 (V (r) + V (r − c))−1)

Λ2 = A−1
1

(
0 0
0 V (r2 − c2)−1

)
+ A−1

2 (V (r) + V (r − c))−1)

where the parameters φi are scalars, and the Appendix shows that φ1 > 0 and φ2 > 0.
This shows that we get two deviations from the case of homogeneity of investors. First,

the effect of the liquidity risk covariances is smaller (relative to the market covariance).
Second, we get a segmentation result. The expected return on the first asset is higher
by an extra term that reflects the fact that only a subset of the investors holds this
asset. This is in the spirit of the international asset pricing literature (e.g. de Jong and
de Roon, 2005), where segmentation also leads to additional effects on expected returns,

that depend on the size of the supply of the segmented asset (S̃1). The Appendix shows
that the coefficient on the segmented supply, φ2, increases with the risk-aversion of long-
term investors A2, since these are the investors that have to hold this asset in equilibrium.

Then we turn to the expected liquidity coefficients, Λ−1
1 Λ2. To obtain some intuition,

consider the case where there is zero covariance between returns on the two assets (both
before and after costs). In this case, in the Appendix we show that

Λ−1
1 Λ2 =

(
1
2

0
0 1+η

2+η

)
(14)

with η = A2

A1

V (r2−c2)+V (r2)
V (r2−c2)

> 0. This reveals several interesting effects. First, if we neglect
the covariance terms, we see that the coefficient on expected liquidity is larger for the
low-cost asset 2. Thus if we graph the relation between expected returns and expected
costs, we get a piecewise linear and concave relation, like Amihud and Mendelson (1986).
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Intuitively, when costs on an asset are too high, short-term investors drop out and only
long-term investors invest in the asset. Given that long-term investors care less about
liquidity, the effect of liquidity on expected returns is smaller. In this two-period, two-
asset example, the coefficient is equal to 1/2 for asset 1, because the holding period is
two periods.

Finally, note that Amihud and Mendelson (1986) find that long-term investors only
invest in high-cost assets, and not in the low-cost assets. This is because they assume
risk-neutrality. In our model with risk averse agents long-term investors will diversify
and invest in low-cost assets as well.

3 A Multi-Period Liquidity-CAPM

The baseline model with two assets and two investors can be generalized to a set-
ting with many assets and many investors with heterogenous investment horizons. This
general framework is more realistic and, most importantly, is suitable for empirical esti-
mation. Specifically, we model j = 0, 1, . . . , N classes of investors with distinct investment
horizons h0, h1, . . . , hN . Each period, a fixed quantity Qj > 0 of type j investors enters
the market. We set h0 = 1 and Q0 > 0, thus assuming that there are at least some
1-period investors. For ease of notation we will write Rt = 1 + rt.

Appendix YY shows that this setup generates the following equilibrium expected
returns:

E [Rt+1]−Rf =

I +
N∑
j=1

h2
j

A0/Q0

Aj/Qj

Var (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

E [ct+1]

− A0

Q0

I +
N∑
j=1

h2
j

A0/Q0

Aj/Qj

Var (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

× S̃ ′tιCov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
−

I +
N∑
j=1

h2
j

A0/Q0

Aj/Qj

Var (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

×
N∑
j=1

hj
A0/Q0

Aj/Qj

Var (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

×
(
E
[
ct+hj

]
+ (hj − 1) +Rf

(
R
hj−1
f − hj

))
. (15)

Equation (15) corresponds to the case of integration described in the basic version
of the model in Section 2.2. We now introduce in this general framework the feature of
segmentation, i.e. the possibility that some classes of investors do not hold some assets
because the associated trading costs are too high relative to the expected return over the
investment horizon. To this end, we introduce sets Dj (j = 0, . . . , N) that are subsets
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of 1, . . . , K, where K is the number of tradable assets. The set Dj represents the set of
investable assets for the class of investors j. For example, a short horizon investor rules
out certain assets a-priori because the associated transaction costs are too large.

Without loss of generality we assume that for some j it holds that Dj = {1, . . . , K}.
For ease of exposition, we assume that Dj ⊂ Dj+1 for each j < N . This then implies
that DN = {1, . . . , K}.

We denote with ADj
any K ×K matrix A that is equal to the matrix A without the

rows and columns whose indices are not included in Dj. Appendix YY shows that, in
this setting, equilibrium excess returns are defined by the following equation:

E [Rt+1]−Rf =

(
V D0

0,t +
N∑
j=1

hjV
Dj

j,t

)−1

E [ct+1]

+
A0S̃

′
tι

Q0

(
V D0

0,t +
N∑
j=1

hjV
Dj

j,t

)−1

Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
+

(
V D0

0,t +
N∑
j=1

hjV
Dj

j,t

)−1 N∑
j=1

V
Dj

j,t

(
E
[
ct+hj

]
+ (hj − 1) +Rf

(
R
hj−1
f − hj

))
,

(16)

where

V
Dj

j,t =
hjA0Qj

AjQ0

Var (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

Dj ,p

.

4 Empirical Methodology

The theoretical setup developed in the previous Sections generates a setting with
segments of assets held by different investors. Specifically, low-cost assets held by all
investors, medium-cost assets held by investors with medium-term or long-term horizons,
and high-cost assets only held by long-term investors. Stocks in the different segments
will have expected equilibrium returns with different compositions of liquidity premi-
ums, standard CAPM risk premiums, and segmentation effects. In this Section, we start
explaining the details of our estimation methodology. We then discuss alternative ap-
proaches for a robust computation of standard errors.

4.1 General Setting

We use a Generalized Method of Moments (GMM) methodology to estimate the
equilibrium condition in the general case, as defined by equation (15). The key esti-
mated parameters are the risk aversion coefficients of the different classes of investors or,
more generally, risk aversion divided by the number of agents per holding period. More
specifically, we estimate γ0 = A0/Q0 and γj = (A0/Q0)/(Aj/Qj). We use the moment
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conditions E [g(γ)] = 0, where the elementary zero functions g(γ) are given by

g(γ) = E [Rt+1]−Rf −

I +
N∑
j=1

h2
jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

E [ct+1]

− γ0

I +
N∑
j=1

h2
jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

S̃ ′tιCov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)

−

I +
N∑
j=1

h2
jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1−1

×
N∑
j=1

hjγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1 (
E
[
ct+hj

]
+ (hj − 1) +Rf

(
R
hj−1
f − hj

))
.

(17)

A complication in the estimation is that the expected returns and covariances included in
these equations are themselves unknown and need to be estimated. We thus use the delta
method and estimate the model in two stages: first, expected returns and covariance, then
the model parameters.

We denote the required moments by ψ, the corresponding elementary zero functions
in the first stage by g1(ψ), and the second stage by g2(ψ, γ), where we make explicit
the dependence on ψ. We derive the standard errors as follows. Since there is sampling
uncertainty in the second stage as the estimator of ψ is a consistent estimator for the
population moments, we write the second-stage moment conditions as

g2(ψ, γ) = 0. (18)

Let

g1T (x, ψ) =
1

T

T∑
t=1

g1(xt, ψ), (19)

where the dependence on the observations xt will be suppressed in what follows. Looking
at the first stage, we have

√
T
(
ψ̂ − ψ

)
d→ N

(
0, G−1

1ψSψ
(
G′1ψ

)−1
)
, (20)

where

G1ψ(ψ) =
∂g1T (ψ)

∂ψ
and Sψ = lim

T→∞
Var

(√
Tg1T (ψ)

)
.

We can now use the delta method to find the standard errors for γ̂, as γ̂ is implicitly
given as the solution of the elementary zero function in the second stage or, equivalently,
as the solution of the GMM minimization problem.

Appendix ZZ derives the following result

√
T (γ̂ − γ0)

d→ N
(

0,
(
G′2γG2γ

)−1
G′2γG2ψG

−1
1ψSψ

(
G′1ψ

)−1
G′2ψG2γ

(
G′2γG2γ

)−1
)
, (21)
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where Gix is the gradient of the elementary zero function of stage i with respect to
the estimated parameter x. This result allows us to compute standard errors for the γ
estimates taking into account the pre-estimation of the various moments.

4.2 Shrinkage

A potential issue could arise given that the estimation requires inversion of the esti-
mated covariance matrix of returns. In finite samples, this inversion may lead to extreme
long-short position. Michaud (1989) points out that matrix inversion maximizes the ef-
fects of errors in the input assumptions. Consistent with this, Britten-Jones (1999) finds
the sampling error of the weights of mean-variance efficient portfolios to be very large.

As a first step towards addressing this issue, we use the i.i.d. assumption to rewrite
part of the moment conditions as follows

Var (Rt+1 − ct+1)Var

 hj∑
k=1

Rt+k − ct+hj

−1

= Var (Rt+1 − ct+1) Var

hj−1∑
k=1

Rt+k +Rt+hj − ct+hj

−1

= Var (Rt+1 − ct+1)

Var

hj−1∑
k=1

Rt+k

+ Var
(
Rt+hj − ct+hj

)−1

= Var (Rt+1 − ct+1) ((hj − 1)Var (Rt+1) + Var (Rt+1 − ct+1))−1 . (22)

For the short horizon covariance matrix Var (Rt+1) (and possibly also for Var (Rt+1 − ct+1))
we use a shrinkage estimator for greater stability (see Ledoit and Wolf, 2003).

Fan, Fan, and Lv (2008) consider a factor model as a conditioning approach and
demonstrate that this model provides a better conditioned alternative to the fully-estimated
covariance matrix of stock returns.

Our shrinkage estimator is based on the Sharpe (1963) single index model (a factor
implementation of the standard CAPM). Let β denote the vector of CAPM betas cor-
responding to each portfolio and let ∆ denote the diagonal matrix of residual variances
corresponding to each factor regression. The single index model then can be used to
estimate Var (Rt+1) by

F = Var
(
Rm
t+1

)
ββ′ + ∆. (23)

The shrinkage estimator is given by

V̂ar (Rt+1) =
k

T
F +

(
1− k

T

)
Var (Rt+1) , (24)

where k is (a consistent estimator for) the optimal shrinkage constant as derived by Ledoit
and Wolf (2003). To obtain a shrinkage estimator for Var (Rt+1 − ct+1) we can follow a
similar procedure, using the Acharya and Pedersen (2005) liquidity CAPM instead of the
standard CAPM.
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4.3 Bootstrapped Standard Errors
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5 Data

We use daily stock return and volume data from CRSP from 1962 until 2004 for all
common shares listed on NYSE and AMEX. As our empirical measures of liquidity rely
on volume, we do not include Nasdaq since the volume data includes interdealer trades
(and only starts in 1982). Overall, we consider a number of stocks ranging from 1056 to
3358, depending on the month. To correct for survivorship bias, we adjust the returns
for stock delisting (see Shumway, 1997; Acharya and Pedersen, 2005). Some descriptive
statistics are given in Table 1.

The relative illiquidity cost is computed as in Acharya and Pedersen (2005). The
starting point is the Amihud (2002) illiquidity measure, which is defined as

ILLIQj
t =

1

Dj
t

Dj
t∑

d=1

∣∣Rj
td

∣∣
V j
td

(25)

for stock j in month t, where Dj
t denotes the number of observations available in month

t, Rj
td and V j

td denote the volume in millions of dollars on day d in month t, respectively.
We follow Acharya and Pedersen (2005) and define a normalized measure of illiquidity

that deals with non-stationarity and is a direct measure of trading costs, consistent with
the model specification. The normalized illiquidity measure can be interpreted as the
dollar cost per dollar invested and is defined by

cjt = min
{

0.25 + 0.30ILLIQj
tP

m
t−1, 30.00

}
, (26)

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end of

month t− 1 divided by the value at the end of July 1962. The product with Pm
t−1 makes

the cost series cjt relatively stationary and the coefficients 0.30 and 0.25 are chosen as
in Acharya and Pedersen (2005) to match approximately the level and variance of cjt for
the size portfolios to those of the effective half spread reported by Chalmers and Kadlec
(1998). The value of normalized liquidity cjt is capped at 30% to make sure the empirical
results are not driven by outliers.

Turnover is computed as dollar volume divided by market capitalization. As the
monthly turnover series contains some outliers (e.g. exchange traded funds with relatively
low market capitalization), we censor the turnover series at 500%. This affects 1023 data
points.

We obtain the book-to-market ratio using fiscal year-end balance sheet data from
COMPUSTAT in the same manner as Ang and Chen (2002). They follow Fama and
French (1993) in defining the book value of a firm as the sum of common stockholders’
equity, deferred taxes, and investment credit minus the book value of preferred stocks.
The ratio is obtained by dividing the book value by the fiscal year-end market value.

We construct the market portfolio on a monthly basis and only use stocks that have
a price on the first trading day of the corresponding month between $5 and $1000. We
include only stocks that have at least 15 observations of return and volume during the
month.

We construct 25 illiquidity portfolios, 25 illiquidity variation portfolios, and 25 book-
to-market and size portfolios, similarly to Acharya and Pedersen (2005). The portfolios

12



are formed on an annual basis. For these portfolios, we require again for the stock price
on the first trading day of the corresponding month to be between $5 and $1000. For the
illiquidity and illiquidity variation portfolios, we require to have at least 100 observations
of the illiquidity measure in the previous year.

13



6 Empirical Results

The estimation was performed for the period 1964–2004. Two classes of investors
were used. The first class has an investment horizon of one month, the second class an
investment horizon of 60 months (5 years; twice the average holding period implied by
the turnover of the stocks in our sample). The estimated parameters are γ0 = A0/Q0

and γj = (A0/Q0)/(Aj/Qj), as well as a constant term α and a coefficient κ for the cost

term. S̃ ′tι was assumed to be constant and absorbed into the γ0. We considered both the
sample moment estimator as well as the shrinkage estimator for the covariance matrices.
It turned out that the sample moment yields more precise estimates, which is most likely
due to our relatively large time dimension. In fact, we have almost 500 time series
observations corresponding to each of the 25 cross sectional observations. Therefore, the
reported results do not use the shrinkage procedure.

The results in Table 2 show that the first specification of the model improves the R2

obtained by Acharya and Pedersen (2005) by about 5%. If we assume that risk aversion
is constant across investor classes (i.e. that A0 = A1), we can make inferences about the
number of investors in each class. We can do this through examining γ0/γ1 = A1/Q1 and
comparing it to A0/Q0. This amounts to computing Q1/Q0, which is equal to 1/γ1. Note

that including S̃ ′tι in γ0 does not influence our comparison. The results for the first and
fourth specification respectively indicate that there are about 48 and 6 times as many
long horizon investors as there are short horizon investors. This is consistent across all
specifications: the number of long term investors is much larger than the number of short
term investors.

From Figure 2 and Figure 3 we see that the covariance term provides by far the
largest contribution to the expected excess returns. The holding period variance term
also provides a large contribution across all portfolios. The absolute contribution grows
with the level of illiquidity and the relative contribution is larger for the most extreme
portfolios. The impact of the cost term increases with the level of illiquidity of the
portfolio. Note that this does not follow by definition, as the expected cost is premultiplied
by a term depending among other things on γ1.

7 Conclusions
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8 Appendix

8.1 Two-period two-asset model

In this Appendix we provide derivations for several equations in Section 2.
Optimal demand two-period investors
Two-period agents solve

max
y2

(Et(Wt+2)− 1

2
A2Vt(Wt+2)) (27)

Wt+2 = (Pt+2 +Dt+1 +Dt+2 − Ct+2)′y2 + rf (Dt+1 + rf (e2 − P ′ty2))

The solution to this problem is

y2 =
1

A2

V art(Pt+2 +Dt+1 +Dt+2−Ct+2)−1(Et(Pt+2 +Dt+1 +Dt+2−Ct+2)− r2
fPt) (28)

or

y2 =
1

A2

diag(Pt)
−1V art(1+rt+1+

Pt+1

Pt
rt+2−

Pt+2

Pt
ct+2)−1(Et(1+rt+1+

Pt+1

Pt
rt+2−

Pt+2

Pt
ct+2)−r2

f )

(29)
In equilibrium, prices Pt are constant over time, and we obtain equation (6).

Equilibrium in case of integration
Filling in the optimal demands into the equilibrium condition 2y1 + y2 = S − y2 and

multiplying both sides by V ar(rt+1 − ct+1) gives

2

A1

(E(1 + rt+1 − ct+1)− rf ) + (30)

2

A2

V ar(rt+1 − ct+1)V ar(rt+1 + rt+2 − ct+2)−1(E(1 + rt+1 + rt+2 − ct+2)− r2
f )

= V ar(rt+1 − ct+1)S̃ = S̃ ′ιCov(rt+1 − ct+1, rm,t+1 − cm,t+1)

Dropping time subscripts and approximating r2
f by 2rf − 1, this equilibrium condition

can be rewritten as

E(1 + r)− rf =
(
A−1

1 V (r − c)−1 + 2A−1
2 (V (r) + V (r − c))−1)

)−1
S̃/2 + (31)(

A−1
1 V (r − c)−1 + 2A−1

2 (V (r) + V (r − c))−1)
)−1 ·(

A−1
1 V (r − c)−1 + A−1

2 (V (r) + V (r − c))−1)
)
E(c)

In the two-asset case, the term
(
A−1

1 V (r − c)−1 + 2A−1
2 (V (r) + V (r − c))−1)

)−1
S̃/2 can

be written
1

d0

(
1

d1

+
1

d2

)
S̃ ′ι

2
Cov(r − c, rm − cm) +

1

d0d2

S̃ ′ι

2
Cov(r, rm) (32)

with

d0 = det(A−1
1 V (r − c)−1 + 2A−1

2 (V (r) + V (r − c))−1) (33)

d1 = A1 det(V (r − c))

d2 =
1

2
A2 det(V (r) + V (r − c))
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The equilibrium terms for Cov(r, rm) and Cov(r− c, rm− cm) in equation (8) then follow

directly with λ1 = 1
d0d1

S̃′ι
2

and λ2 = 1
d0d2

S̃′ι
2
. Both λ1 and λ2 are positive because the

determinants of covariance matrices are positive. It is easy to see that the liquidity
premium, relative to the total risk premium, λ1+λ2

(λ1+λ2)+λ2
, can be written as 1 − 1

d2/d1+2

which is increasing in A2/A1.
Next we turn to the expected liquidity effect(

A−1
1 V (r − c)−1 + 2A−1

2 (V (r) + V (r − c))−1)
)−1 · (34)(

A−1
1 V (r − c)−1 + A−1

2 (V (r) + V (r − c))−1)
)
E(c)

which in the two-asset case can be rewritten as

I · E(c)−
(

1

d0

(
1

d1

+
1

d2

)V (r − c) +
1

d0

1

d2

V (r)

)
· (35)(

A−1
2 (V (r) + V (r − c))−1)

)
E(c)

which can be simplified into

(1− 1

d0d2

)I · E(c)− 1

d0d1A2

(V (r − c)−1V (r) + I)−1E(c) (36)

With γ1 = 1− 1
d0d2

and γ2 = 1
d0d1A2

we then obtain the expression for Φ in equation (8).

Finally, we show that γ1 − 1
2
γ2 < 1. This inequality follows directly as all determinants

di are positive.
Equilibrium in case of segmentation
In this case the equilibrium condition is(
A−1

1

(
0 0
0 V (r2 − c2)−1

)
+ 2A−1

2 (V (r) + V (r − c))−1)

)
(E(1 + r)− rf ) = (37)

S̃/2 +

(
A−1

1

(
0 0
0 V (r2 − c2)−1

)
+ A−1

2 (V (r) + V (r − c))−1)

)
E(c)

or, in short, B (E(1 + r)− rf ) = S̃/2+CE(c). First, the liquidity risk implications follow
from working out the terms in the matrix B,

B−1S = φ1(Cov(r, rm) + Cov(r − c, rm − cm)) +

(
φ2S̃1

0

)
(38)

where φ1 and φ2 are scalars, with

φ1 =
1

A2d3d4

S̃ ′ι > 0 (39)

φ2 =
1

2A1d4V (r2 − c2)
> 0 (40)

d3 = det(V (r) + V (r − c)) (41)

d4 = det(B) (42)
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From the definition of d2 it directly follows that φ2 is increasing in A2. Then we turn to
the expected liquidity coefficients, B−1C, and we get

B−1C =
2

A2d1d2

 1
A2
I+

1
A1V (r2−c2)

(
1
2
(V (r2) + V (r2 − c2)) 1

2
(Cov(r1,r2) + Cov(r1 − c1, r2 − c2))

0 (V (r2) + V (r2 − c2))

) 
(43)

If the covariances are zero, this simplifies to (after some algebra)(
1
2

0
0 1+η

2+η

)
(44)

with η = A2

A1

V (r2−c2)+V (r2)
V (r2−c2)

> 0.
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8.2 Multi-period multi-asset model

Equilibrium in case of integration
We derive here the equilibrium for equation (15):

Equilibrium in case of segmentation
Here we start defining some useful notation.
Therefore ADj

is a |Dj|× |Dj| matrix, where | · | denotes the cardinality of a set. As it
will be used frequently, we introduce the notation A−1

Dj ,p
for the inverse of ADj

with zeros

inserted at the locations where rows and columns of A were removed, so that A−1
Dj ,p

is a

K ×K matrix. Note that formally, for A−1
Dj ,p

to be well-defined, it is not necessary that
A be invertible. It is only required that ADj

be invertible.
For example, let

A =

 1 3 2
2 2 4
3 5 7


and let Dj = {1, 3}. Then

ADj
=

[
1 2
3 7

]
and detADj

= 1, which implies A−1
Dj

= adjADj
, so that

A−1
Dj

=

[
7 −2
−3 1

]
.

It follows that

A−1
Dj ,p

=

 7 0 −2
0 0 0
−3 0 1

 .
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8.3 Estimation Methodology: Obtaining Standard Errors

We start with the elementary zero function in the second sateg

g2(ψ̂, γ) = 0, (45)

or, equivalently, with the GMM minimization problem

min
γ

g2(ψ̂, γ)′g2(ψ̂, γ), (46)

as the solution of
2G2γ(ψ̂, γ)′g2(ψ̂, γ) = 0, (47)

where

G2γ(ψ, γ) =
∂g2(ψ, γ)

∂γ
. (48)

Dividing both sides of (47) by 2 and evaluating at γ̂, we may write

G2γ(ψ̂, γ̂)′g2(ψ̂, γ0) +G2γ(ψ̂, γ̂)′
(
g2(ψ̂, γ̂)− g2(ψ̂, γ0)

)
= 0. (49)

Next, we expand g2(ψ̂, γ̂) around γ0:

g2(ψ̂, γ̂)− g2(ψ̂, γ0) ≈ G2γ(ψ̂, γ̂) (γ̂ − γ0) . (50)

It follows that

G2γ(ψ̂, γ̂)′g2(ψ̂, γ0) +G2γ(ψ̂, γ̂)′G2γ(ψ̂, γ̂) (γ̂ − γ0) = 0. (51)

We now expand g2(ψ̂, γ0) around ψ0 and use the fact that g2(ψ0, γ0) = 0:

g2(ψ̂, γ0) ≈ G2ψ(ψ̂, γ̂)
(
ψ̂ − ψ0

)
, (52)

where

G2ψ(ψ, γ) =
∂g2(ψ, γ)

∂ψ
. (53)

Hence
G2γ(ψ̂, γ̂)′G2γ(ψ̂, γ̂) (γ̂ − γ0) = −G2γ(ψ̂, γ̂)′G2ψ(ψ̂, γ̂)

(
ψ̂ − ψ0

)
. (54)

Using this result we obtain

√
T (γ̂ − γ0) ≈ −

(
G2γ(ψ̂, γ̂)′G2γ(ψ̂, γ̂)

)−1

G2γ(ψ̂, γ̂)′G2ψ(ψ̂, γ̂)
√
T
(
ψ̂ − ψ0

)
. (55)

It follows that

√
T (γ̂ − γ0)

d→ N
(

0,
(
G′2γG2γ

)−1
G′2γG2ψG

−1
1ψSψ

(
G′1ψ

)−1
G′2ψG2γ

(
G′2γG2γ

)−1
)
. (56)

This result allows us to compute standard errors for the γ estimates taking into account
the pre-estimation of the various moments.
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Table 1: Descriptive statistics.

This table shows some descriptive statistics pertaining to the data that were used to estimate the liquidity-holding period
model. The data used are monthly data corresponding to 25 value-weighted portfolios during the period 1964–2004.

Portfolio E [ct+1] E [Rt+1]−Rf Var (Rt+1)

1 0.0025 0.0038 0.0419
2 0.0026 0.0041 0.0456
3 0.0026 0.0046 0.0450
4 0.0027 0.0058 0.0457
5 0.0028 0.0061 0.0472
6 0.0029 0.0056 0.0465
7 0.0030 0.0060 0.0471
8 0.0031 0.0057 0.0481
9 0.0033 0.0059 0.0481

10 0.0035 0.0064 0.0472
11 0.0038 0.0071 0.0505
12 0.0042 0.0058 0.0473
13 0.0046 0.0066 0.0477
14 0.0050 0.0076 0.0495
15 0.0057 0.0071 0.0500
16 0.0065 0.0070 0.0494
17 0.0076 0.0086 0.0502
18 0.0087 0.0073 0.0500
19 0.0103 0.0090 0.0519
20 0.0136 0.0067 0.0526
21 0.0162 0.0082 0.0537
22 0.0208 0.0098 0.0537
23 0.0285 0.0089 0.0556
24 0.0444 0.0085 0.0556
25 0.0761 0.0099 0.0626
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Table 2: Illiquidity portfolio regressions.

This table shows the results from estimation of the liquidity-holding period model. The estimates are based on monthly
data corresponding to 25 value-weighted portfolios during the period 1964–2004. An equal-weighted market portfolio was
used. The liquidity-holding period model specifications are special cases of the relation

E [Rt+1]−Rf = α+ κ

I +
N∑

j=1

h2jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

−1

E [ct+1]

− γ0

I +
N∑

j=1

h2jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

−1

× S̃′tιCov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
−

I +

N∑
j=1

h2jγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

−1

×
N∑

j=1

hjγjVar (Rt+1 − ct+1) Var

 hj∑
k=1

Rt+k − ct+hj

−1

×
(
E
[
ct+hj

]
+ (hj − 1) +Rf

(
R

hj−1

f − hj
))

,

where N = 1, h0 = 1, and h1 = 60. For each coefficient the t-statistic is given in parentheses. The pseudo-R2 is reported
in the rightmost column.

γ0 γ1 α κ R2

1 12.89 0.0207 -0.0073 0.1386 0.7904
(0.0737) (0.0436) (-0.4088) (0.0502)

2 91.94 0.2449 -0.0077 0.7876
(0.1546) (0.1599) (-0.6423)

3 2.694 0 0.0414 0.6954
(0.3359) (0) (0.1143)

4 29.70 0.1795 0.6750
(0.5155) (0.5343)
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Figure 1: Fitted excess returns vs. realized excess returns.
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Figure 2: Decomposition of predicted excess return. The decomposition is given as the
impact of the cost term (lower part), the covariance term (middle part), and the holding
period variance term (upper part).
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Figure 3: Decomposition of proportions of predicted excess return. The decomposition
is given as the impact of the cost term (lower part), the covariance term (middle part),
and the holding period variance term (upper part).

25


	Introduction
	A Two-Period Two-Assets Liquidity-CAPM
	Case 0, homogeneity: both investors have the same horizon
	Case 1, integration: both investors invest in both assets
	Case 2, partial segmentation: only the long-term investor invests in both assets

	A Multi-Period Liquidity-CAPM
	Empirical Methodology
	General Setting
	Shrinkage
	Bootstrapped Standard Errors

	Data
	Empirical Results
	Conclusions
	References
	Appendix
	Two-period two-asset model
	Multi-period multi-asset model
	Estimation Methodology: Obtaining Standard Errors


