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Abstract

This paper examines temporal aspects of the price discover process in the (fragmented)
S&P 500 market. This is achieved by augmenting the coefficients in the model upon which
the price discovery measures are based, by a set of time-varying (theoretically-implied)
scaling factors. The factors considered can be characterized as those that measure mar-
ket liquidity and those that measure the degree of information asymmetry that exists
at a particular time. Regarding the latter measures, this feature of financial markets
is assessed by considering, inter alia, price discovery around the release of key macroe-
conomic information. Using high frequency data from five constituent S&P 500 index
markets, the results provide two main insights into price discovery in this fragmented
market. First, the majority of price discovery appears to occur in the market for the
individual stocks making up the index and in the (electronically traded) E-mini futures
market. And second, the E-mini futures market becomes the dominant price discovery
market only during periods of extreme information asymmetry and when this market is
liquid – a finding that supports theoretical arguments proposed in related literature.
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In addition to providing a (liquid) trading mechanism, financial markets enable price

discovery; that is, ‘the impounding of new information into the security price’ (Hasbrouck,

1995). While the liquidity provision role of financial markets has been extensively studied

in the microstructure literature, the latter role has only recently come under scrutiny. The

primary reason for this is the institutional trend toward multiple trading of securities on

competing markets, with market diversity usually facilitated by the introduction of electronic

trading systems.1 Therefore, as markets (and order flow) become more fragmented, the

relative performance of the constituent markets (in terms of their respective contribution to

the price discovery process) becomes increasingly relevant to investors and trading system

designers alike.2

The market fragmentation trend has also fueled a debate in the finance literature concern-

ing the relative merits of the two trading systems prevalent in fragmented markets, viz., open

outcry (quote-driven dealer markets) and electronic trading systems (order-driven auction

markets). In turn, given the preferences of informed (as opposed to uninformed) traders for,

inter alia, anonymity in the trading process, the relative performance of these two systems is

also informative regarding the nature of the trading activities of these types of traders and,

ultimately, regarding price determination in financial markets.3 Therefore, by examining

measures of price discovery in fragmented markets one can shed light on the relative benefits

(and costs) of the above trading system designs, and on issues pertaining to trading in the

presence of asymmetric information.

Though fragmented markets have long been the subject of academic inquiry (see Garbade

and Silber, 1979, 1982, for early examples), it is only since the work of Hasbrouck (1995)

that richer characterizations of price discovery have been possible; see Harris et al (2002),

de Jong and Schotman (2005), and Yan and Zivot (2006a). Each of these methodological
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approaches share the assumption that a common implicit efficient price exists, which, in turn,

is implied by the presence of a cointegrated system of constituent market prices. Moreover,

each measure of price discovery is based on innovations to this efficient price. For instance,

Hasbrouck (1995) defines a market’s contribution to price discovery as the proportion of the

efficient price innovation variance attributed to that market. However, while these common

assumptions are well motivated (both theoretically and empirically), the existing methodolo-

gies also share an assumption that is clearly violated on both theoretical and empirical terms;

specifically, that price discovery does not vary over time. It is this particular assumption

that is relaxed in this paper.

Use of the time-invariant price discovery assumption is somewhat surprising given the fact

that likely covariates to the relative amount of price discovery vary considerably over time.

For instance, Admati and Pfleiderer (1988) demonstrate (theoretically) that the clustering of

information acquisition and informed trading are the result of liquidity-motivated trading.4

Moreover, Lei and Wu (2005) and Ting (2006) both find (empirically) that measures of

information asymmetry vary over time, with the latter finding variation over the trading

day and around the release of public information. Given this strong evidence, we introduce

a model that allows price discovery to vary over time. This is achieved by allowing the

coefficients in the model upon which measures of price discovery are based, to covary with

relevant theoretically motivated market-based measures. Indeed, to anticipate some of the

results, we find that using data from the S&P 500 market, this covariation is both statistically

and economically significant, and results in measures of price discovery that vary over the

trading day, around the release of macroeconomic information, and with respect to measures

of information asymmetry.

The rest of the paper is organized as follows. The next section describes the framework
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within which the above issues are examined, while Section II describes the hypotheses tested

using this framework. Section III contains results pertaining to various aspects of the es-

timated models, with Section IV focusing on hypothesis tests relating to these models and

their products, viz., the price discovery measures. The final section concludes. In addition, a

technical appendix is also included that contains derivations of the price discovery measures

used in this paper.

I. Return dynamics and price discovery

In this section a description of the model used to assess the extent of price discovery in a

fragmented market is given, and measures of price discovery are described in the context of

this model (see also Appendix A). In both cases, it is assumed that this market consists of

M constituent markets, each of which competes for the order flow associated with identical

or closely related securities.

A. The econometric model

In this subsection a generalized model of returns is described that represents an aug-

mented version of an existing model of returns used in the context of price discovery. This

augmentation is achieved by relaxing the assumption that the coefficient and variance-

covariance matrices in such a model do not vary over time. In addition to being able to

deliver measures of price discovery, the model also possesses the desirable property of be-

ing able to incorporate the complex dependencies (including periodicities) inherent in high

frequency financial data.

The above requirements are satisfied by the following linearly scaled vector equilibrium
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correction model,

∆pt = Ψ0ht + Ψ(L)(∆pt−1 ⊗ ht) + α(zt−1 ⊗ ht) + εt, (1)

where pt is an (M × 1) vector of log prices in the constituent markets, that is, p′t :=

[p1t, . . . , pMt]; ht is an (R× 1) vector of scaling factors (including unity); Ψ0 is an (M ×R)

matrix of coefficients; Ψ(L) = Ψ1 + Ψ2L + . . . + ΨK−1L
K−2 + ΨKLK−1, is a polynomial

matrix with (M ×MR) coefficient matrix elements {Ψk}K−1
k=1 ; α is an (M ×NR) matrix of

adjustment coefficients; zt−1 := β′pt−1−µ, such that z′t−1 := [z1t−1, . . . , zNt−1], has bilateral

mispricing elements {znt−1} defined as the (demeaned) difference between the (log) price in

the 1st market and the (log) price in the uth market, that is, znt−1 := p1t−1−put−1−µn, ∀u ∈

{2, . . . , M}, n ∈ {1, . . . , N}, n = u− 1, N = M − 1; β′ := (1N×1
...− IN ); 1N×1 is an (N × 1)

vector of ones; IN is an N -dimension identity matrix; µ is a (N × 1) vector containing the

means of β′pt−1; ε′t := [ε1t, . . . , εMt], with εt|It−1 ∼ D(0M×1,Σt) such that It−1 represents

the information set available at time t− 1, D is a continuous distribution with support over

(−∞,∞), mean equal to zero in all constituent markets, and variance-covariance matrix Σt;

0M×1 is an (M × 1) vector of zeros; and ⊗ is the Kronecker product operator.

Rearranging (1) gives the following equivalent time-varying coefficient representation of

the above equilibrium correction model:

∆pt = Ψ0t + Ψt(L)∆pt−1 + αtzt−1 + εt, (2)

where the (M × 1) vector Ψ0t ≡ Ψ0ht; the (M × M) matrix Ψt(L) ≡ Ψ(L)(IM ⊗ ht);

and the (M × N) matrix αt ≡ α(IN ⊗ ht). This equation states that the prices in each

of the constituent markets are cointegrated, with equilibrium correction occurring via the
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actions of arbitrageurs seeking riskless (or very low risk) profit opportunities. That is, if

a difference occurs between prices in the constituent markets, then arbitrageurs will take

offsetting positions in the relevant securities. In doing this, prices will eventually revert

back (correct) to their equilibrium levels and deliver profits to the arbitrageurs. However,

in contrast to that assumed in the time-invariant parameter (i.e., unscaled) version of the

equilibrium correction model, the rate at which prices correct to their equilibrium levels

is functionally dependent upon market conditions that are, in turn, measured by a set of

time-varying scaling factors.5

B. Measuring price discovery

The above models form the foundations of the augmented price discovery measures used

in this paper. These measures are derived in Appendix A. As is clear from this appendix,

the derivations are divided into three parts. The first part demonstrates the equivalence of

an augmented version of Hasbrouck’s (1993) unobservable efficient price model (see (A.1a),

(A.1b), and (A.1c), in Appendix A), with the equilibrium correction model in (1), under a

variety of different assumptions. Maintaining these assumptions, explicit expressions for the

parameters in the former of these models are derived that are based on the parameters ob-

tained from the latter model (i.e., on observable data). In turn, these are then used to derive

a number of price discovery measures, each of which is based on the different assumptions

made during the first stage of the derivations. This process eventually leads to the following

price discovery measures: the augmented Harris et al (2002) component share measure (de-

noted f1t); the augmented Hasbrouck (1995) information share measure (denoted f2t); the

augmented de Jong and Schotman (2005) information share measure (denoted f3t); and the

augmented Yan and Zivot (2006a) non-standardized, standardized (relative), and aggregated

price discovery efficiency loss measures (denoted f4K,t, sf4K,t, and a ln f4K,t, respectively).6
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Though extensive descriptions of all the above price discovery measures is beyond the

scope of the current paper, for illustration purposes it is useful to demonstrate the intuition

lying behind one of the measures.7 Consider, for example, the augmented Harris et al (2002)

component share measure. Under the assumptions necessary to derive this measure, the

permanent innovation, ηP
t in (A.1b), is a function of the return shocks to each constituent

market, as measured by εt in (1). Moreover, this function is linear, with the marginal contri-

bution of each constituent market’s return shock to the permanent innovation given by the

time-varying (observable) ‘long-run impact’ column vector, denoted θt. It is this measure,

albeit standardized so that the elements sum to unity, that is referred to as the augmented

Harris et al (2002) component share measure of price discovery. It differs from its traditional

(non-augmented) counterpart in that the augmented version allows the marginal contribu-

tions to be functionally dependent on a series of time-varying scaling factors.8 Consequently,

it represents a measure of price discovery that is free from the assumption of time-invariance

– an assumption undoubtedly violated given the time-varying nature of the trading process.

II. Hypotheses

In this section a number of hypotheses are proposed regarding the appropriateness of the

models underlying the price discovery measures, and the nature of the measures themselves.

A. Preliminary hypotheses

The validity of the results presented in the subsequent section depend heavily on the

appropriateness of the model of returns upon which the price discovery measures are based.

As the primary objective of this paper is to introduce time-varying price discovery measures,

then the appropriateness of the linearly scaled equilibrium correction model given by (1),

versus the traditional (unscaled) version of this model, must be demonstrated. Therefore,

6



the first null hypothesis considered in this paper can be formally stated as

H1
0: The linearly scaled and unscaled versions of the equilibrium correction model provide

equitable representations of the data,

where representativeness is measured in terms of (penalized) model fit, and via a series of

Wald tests applied to the coefficients in the unrestricted (linearly scaled) model in order to

yield the restricted (unscaled) functional form.

If the linearly scaled equilibrium correction model does provide a superior representation

of the data then it is also of interest to determine which particular scaling factors drive the

results. Formally, we test the null hypothesis

H2
0: The superiority of the linearly scaled version of the equilibrium correction model is not

driven by the ith scaling factor,

where the significance of the ith scaling factor is assessed via a Wald test applied to the ith

scaling factor coefficients in the unrestricted (linearly scaled) model in order to yield a model

containing no ith scaling factor coefficients.

B. Main hypotheses

A number of recent studies have focused on the role of trading system design in deter-

mining price discovery. Most notably, Hasbrouck (2003) examines relative price discovery in

various US equity index markets, each composed of constituent markets that employ both

electronic and non-electronic trading systems. Concerning the S&P 500 market, he finds

that approximately 90% of the price discovery occurs in the electronically traded E-mini

futures market – a result confirmed by the subsequent studies of Ates and Wang (2004), and

Kurov and Lasser (2004).9 Therefore, in order to replicate theses studies, the following null

hypothesis is tested:

H3
0: Relative price discovery is not a function of trading system design,
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where trading system design is primarily defined according to whether a market trades elec-

tronically or otherwise. Moreover, if one is willing to accept the conjecture that informed

traders prefer to trade via (anonymous) electronic trading systems then testing this hy-

pothesis also casts light on the role of asymmetric information in determining relative price

discovery.

While previous studies provide important insight into a crucial determinant of price dis-

covery, they are necessarily limited in that only cross-sectional (constituent market) variation

in price discovery is permitted. However, given the theoretical and empirical evidence con-

cerning the time-varying nature of asymmetric information (see Admati and Pfleiderer, 1988,

and Ting, 2006, respectively), it would appear appropriate to test for (time-series) relations

amongst relative price discovery and the degree of information asymmetry. Indeed, Bar-

clay and Hendershott (2003) have already established that such relations do exist. However,

their methodology relies on sub-dividing the sample into discrete blocks of data across which

the degree of information asymmetry is expected to vary, i.e., the pre-open, daytime, and

post-close periods. To overcome the discrete nature of the sample sub-division process, we

examine the relations using the continuously changing price discovery measures outlined in

the previous section. Formally, we test the null hypothesis

H4
0: Relative price discovery does not co-vary (over time) with the degree of information

asymmetry,

where the degree of information asymmetry is measured by various time-varying proxies,

including, inter alia, a set of intraday periodicity variables, a set of liquidity variables, and a

set of variables that measure the impact of macroeconomic announcements.10

It is quite possible that price discovery in all markets contemporaneously increases (de-

creases). However, the standardized nature of the relative price discovery measures described
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in the previous section will fail to detect such events. This is a serious flaw if one believes that

the total amount of informed trading in a market can vary over time. To overcome this issue

we make use of the measure of aggregated price discovery given by (A.33) in Appendix A.

This measure of price discovery allows an examination of the total amount of price discovery

present in a market at a particular time. Thus, it is possible to examine whether this amount

varies over time or, more importantly, co-varies with the degree of information asymmetry.

Formally, we test

H5
0: Aggregate price discovery does not co-vary (over time) with the degree of information

asymmetry,

where aggregate price discovery is measured by (A.33) in Appendix A.

III. Empirical results

Having defined the models and hypotheses considered in this paper, we proceed with an

empirical analysis of price discovery in the largest and most fragmented of all the US index

markets, viz., the S&P 500 market. This begins with a description of the data used, and is

followed by an evaluation of the models used to generate the price discovery measures, and

an examination of the hypothesis tests described in the previous section.

A. Data

We make use of various pieces of information concerning all trades in various securities

relating to the S&P 500 index, over the period, January 2, 2002 to December 31, 2002.

In particular, returns, defined as the log change in transaction prices; and trading volume,

defined as the number of trades that occur within an interval, were obtained for S&P 500

SPDR exchange traded fund (ETF) shares (with ticker symbol SPY), which trade on the

American Stock Exchange (AME); S&P 500 iShares ETF shares (with ticker symbol IVV),
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which trade on the AME; S&P 500 regular futures contracts (with ticker symbol SP), which

(mainly) trade in the Chicago Mercantile Exchange (CME) trading pit; and S&P 500 E-mini

futures contracts (with ticker symbol ES), which trade (exclusively) on the (electronic) CME

GLOBEX trading system.11 In addition, the levels of the S&P 500 index were obtained for

each minute of the sample period. All of these data were obtained from Tick Data, Inc.

Both of the S&P 500 futures contracts specify cash settlement of the contract at 8:30 a.m.

on the 3rd Friday of March, June, September, and December. To obtain a single continuous

series for each type of futures contract, we adopt the common practise that futures contracts

with the nearest maturity are replaced (through trading) by contracts with the next nearest

maturity when the next contract’s daily tick count exceeds the current contract tick count.

The above transaction data are then converted to one-minute frequency data. This

frequency is deemed to be sufficiently low enough to avoid stale data, and high enough to

avoid loss of information. Furthermore, as the trading hours of each security differ, these data

are necessarily truncated to produce a fully synchronized intraday dataset. In particular, the

(Chicago time) trading hours for the S&P 500 index, S&P 500 SPDR ETF shares, S&P

500 iShares ETF shares, S&P 500 regular futures contracts, and S&P 500 E-mini futures

contracts are 8:30 a.m. to 3:05 p.m., 8:30 a.m. to 3:15 p.m., 8:30 a.m. to 3:15 p.m., 8:30

a.m. to 3:15 p.m., and 12:00 (midnight) to 12:00 (midnight), respectively.12 Therefore, to

generate an overlapping dataset, to avoid use of duplicate closing and opening prices, and to

avoid use of outlying and/or stale prices at the close of trading, these series are truncated to

contain data over the intraday period, 8:31 a.m. to 3:00 p.m.

The resulting (three) spot and (two) futures series are then used to construct various

bilateral mispricing series. One possible method of constructing mispricing series involving

spot and futures prices is to construct the theoretical futures prices using government-issued
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interest rates with a maturity closest to that of the futures contract, and expected (or re-

alized) dividend payments for each stock in the index over the life of the futures contract.

However, the complex nature of the timing of the dividend income associated with ownership

of the ETF shares makes it very difficult to construct a realistic mispricing series. Conse-

quently, a more simplistic approach is adopted. Specifically, as the interest rate and dividend

series can only change on a daily basis, we use the daily demeaned difference between the

(log) spot and futures prices as the measure of mispricing. Similarly, for mispricing series

involving only spot (or only futures) prices, the differential effects of dividends and interest

rates are controlled for by using the daily demeaned difference between the series.

In addition to the above data, survey data associated with all US macroeconomic an-

nouncements made during 2002 were obtained from Money Market Services International.

This dataset is based on a survey of 40 leading economists who are asked at the end of each

week to forecast various macroeconomic series with realizations due within the next seven

days. The difference between the median of these survey forecasts and the actual value of

the series at the exact time of the announcement is taken as the unexpected value of the

series. This procedure results in data pertaining to 408 macroeconomic announcements, the

majority of which occur at 7.30 a.m. and 9.00 a.m. (Chicago time).13

B. Summary statistics

A selection of descriptive statistics pertaining to one-minute frequency returns for each

constituent market, one-minute frequency bilateral mispricings for the index market against

the other four constituent markets, and one-minute frequency trading intensities for the

regular and E-mini futures markets are given in Table I.

Insert Table I here
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The results highlight five main characteristics of the data. First, index returns are less

volatile than single security (i.e., ETF shares and futures contracts) returns. This ordering

almost certainly reflects the use of imperfectly cross-correlated constituent share transaction

prices when constructing index levels (and index returns). Second, index returns are posi-

tively autocorrelated, while all single security returns are negatively autocorrelated – a result

mostly likely due to the non-synchronous trading and bid-ask bounce microstructure effects,

respectively. Third, the results indicate that the data appear to be highly non-normal, with

excess kurtosis being the likely cause of this non-normality. When considering the return se-

ries, it is possible that this is due to time-variation in the conditional volatility of returns, as

indicated by the tests for (no) autoregressive conditional heteroscedasticity (ARCH) effects.

Nevertheless, some attention must be paid to the validity of the normality assumption when

estimating the models described previously. Fourth, regarding the bilateral mispricing series,

all autocorrelation coefficients are less than unity. This observation most likely indicates the

presence of arbitrageurs who take offsetting spot and/or futures positions when these series

take large absolute values. In turn, this behavior results in stationary mispricing series (as

opposed to the non-stationary prices upon which the mispricing series are based). Finally,

the E-mini futures market is more actively traded that the regular futures market. This is

evinced by the fact that for every trade in the latter market, more than twenty trades occur

in the former market despite the fact that the size of an E-mini contract is only one-fifth the

size of a regular contract.14

C. Model specifics

Two versions of the vector equilibrium correction model given by (1) are estimated in this

paper. The first is a restricted unscaled version of this model where no scaling factors are

applied to the parameters in (1). By contrast, the second model assumes the following set of
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scaling factors: an intraday periodic scaling factor set (henceforth denoted S1); an interday

periodic scaling factor set based on the time-to-maturity of the futures contracts (henceforth

denoted S2); a scaling factor set based on a measure of liquidity (henceforth denoted S3);

and two scaling factor sets based on the time period before and after the announcement of

key macroeconomic data (henceforth denoted S4a and S4b, respectively); with unions of these

sets defined (and denoted) such that S := S1 ∪S2 ∪S3 ∪S4 and S4 := S4a ∪S4b. By allowing

all of these scaling factors to affect each of the parameters in (1), one is explicitly adopting

a highly flexible transmission mechanism that assumes that time-variation in price discovery

is determined by variation in (any of) the parameters in (1). In turn, it is assumed that

this parameter variation (and hence price discovery variation) is fully captured by the above

scaling factors.

With regards to the periodic scaling factor sets, one possible model is one that allows the

parameters in (1) to take different values during each ts (e.g., intraday) time period within

the periodic cycle (e.g., the trading day) of length Ts, where ts ∈ {1, 2, . . . , Ts−1, Ts}, and ts

and t are related by the function fs(t).15 Under this assumption (and ignoring other scaling

factors for now), h′t = [1, D2,t, . . . , Dts,t, . . . , DTs,t], with the dummy variable, Dts,t, taking

a value of unity if the current observation is in the tsth stage of the periodic cycle, and a

value of zero otherwise. A problem with this model is that a large number of coefficients

are required if there are many time periods within each periodic cycle (i.e., Ts is large). It

is possible to overcome this problem by selecting dummy variables that span more than one

time period. However, this assumes that all parameters in (1) are constant within the time

period covered by the dummy variable and then change abruptly whenever a new time period

is entered.

To overcome the above problems, a cubic spline-version of the model is used. This
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model permits a parsimonious representation of parameter variation characterized by smooth

variation over the scaling factor space (e.g., the trading day). Specifically, different cubic

spline functions are estimated between selected points (referred to as knots) within the scaling

factor space. In particular, letting kr denote the (equally spaced) rth knot, with kr = {kr ∈

Z+ : 1 ≤ kr ≤ Ts}, r ∈ {1, . . . , R − 1}, and k1 = 0, the spline-based periodic scaling factors

are given by

h′t := [1,h′1,t, . . . ,h
′
r,t, . . . ,h

′
R−1,t], (3a)

h′r,t := Dr[(ts − kr), (ts − kr)2, (ts − kr)3], (3b)

and Dr equals unity if ts ≥ kr, and zero otherwise.16

While the relationship between intraday periodicity and price discovery can be easily

motivated with respect to the information asymmetry-based arguments in Section II, the

motivation for including other scaling factor sets requires further reasoning based on an

additional key variable. Specifically, the validity of the arguments proposed in Section II

regarding the positive relationship between price discovery and the degree of information

asymmetry depend crucially on the assumption that the electronic trading system is relatively

liquid. If, however, market makers trading on this system increase their effective spreads in

the presence of a large number of informed traders then this may result in a relatively illiquid

market – conditions that will adversely affect the price discovery process.17 To examine this

issue we consider interday periodic and liquidity-based scaling factor sets. The former set

measure liquidity via the time-to-maturity of the nearest futures contract, while the latter

are a function of the one-period lagged value of trade intensity in the E-mini market, with

selection of this market motivated by virtue of the fact that it is the only market in the sample
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based on an electronic trading system (i.e., the GLOBEX system).18 To avoid the potentially

restricted assumption of linear dependence between the scaling factor and liquidity, we also

perform a spline-based transformation of the data. This is achieved by transforming the

data according to (3b), with ts being replaced by the time-to-maturity of the nearest futures

contract and trading intensity.

Finally, given the expectation that informed traders are more likely to be trade around

the time of public announcements, we consider the thirty minute period before and after

the release of all major US macroeconomic announcements.19 In this particular case, the

time from the start of the pre-announcement window and the time to the end of the post-

announcement window are used as the inputs into (3b). By defining time in this way, and

applying the spline-based transformation given by (3b), the parameter values are assured to

converge to their non-announcement period values as the outer edges of the announcement

window are approached.

D. Model estimation

The ordinary least squares (OLS) estimates of the parameters (and measures of model

performance) associated with the unscaled and scaled versions of the equilibrium correction

model are given in Table II.20 The results of each are based on first-order lag dependence

structure and single knot versions of the four scaling factors described in the previous sub-

section. Selection of this particular parameter space is based on the superior system Akaike

Information Criterion (AIC) value associated with this space, against those obtained when

up to a fifth-order lag dependence structure, and up to three knots are considered.21

Insert Table II here

The first thing to note about the estimated models is that they differ from those given in
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(1) in that the constant is unscaled. This is because we have no a priori reason to believe that

the scaling factors will be related to the returns in each constituent market. Indeed, when

the scaling factors are included in the constant term, the resulting model provides an inferior

representation of the data.22 Also, space limitations prevent presentation of all the estimated

parameters of the scaled version of the model. Consequently, we present a summary of these

estimated parameters in the form of the mean estimated parameters calculated over the

sample period.23

The results in Table II indicate that the vast majority of the coefficients are significantly

different from zero. Thus, all constituent markets appear to be characterized by high levels of

interdependence in terms both the mispricing series and the lagged returns series observed in

the ‘other’ constituent markets. This interdependence appears to be strongest in the iShares

ETF shares market, and weakest in the E-mini futures market – a result also evinced by the

differences in the measures of model fit in these markets. Given the association between this

form of interdependence and information flow, it would appear that returns in the former

market are heavily dependent on the information flow generated in other markets, and not

on new information. By contrast, returns in the E-mini market appear to be the product

of trading new information. Whether this trading is fundamental to the efficient price is

formally tested in the subsequent analysis.

Regarding the performance of the two competing models, the results indicate that the

scaled version of the model provides a superior representation of the data. This can be seen by

the marginally superior residual diagnostics, and the superior system R
2, AIC, and Schwarz

Information Criterion (SIC) measures, associated with the scaled version of the model. For

example, the unscaled version of the model produces a system R
2 of 15.02%, while the scaled

version has an associated system R
2 of 17.21%. Therefore, this collective evidence points to
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a rejection of the (preliminary) hypothesis given by H1
0.

IV. Testing the hypotheses

In this section a formal examination of the validity of the null hypotheses, H2
0, H3

0, H4
0,

and H5
0, is carried out. The analysis is divided into those relating to model performance (H2

0),

and those relating to the model-based measures of price discovery (H3
0 to H5

0).

A. Model performance

To formally examine the relative contributions of the parameters within the scaling factor

sets to the variation in the parameters in (1), we carry out a series of Wald tests, each of which

is based on the estimated coefficients (and White’s, 1982, robust ‘sandwich’ estimator of the

asymptotic variance-covariance matrix) from the estimated unscaled and scaled versions of

the model. These tests are designed to examine the significance (or otherwise) of the scaling

factor sets and subsets therein. Specifically, for each scaling factor set (and the union of all

sets), we test the significance of the following sets of coefficients in each of the constituent

market equations: (i). all coefficients, (ii). the coefficients on lagged returns observed in

the same constituent market (henceforth referred to as the own lagged return coefficients),

(iii). the coefficients on lagged returns observed in the other constituent markets (henceforth

referred to as the other lagged return coefficients), (iv). all mispricing coefficients, and (v).

the coefficients in (iii). and (iv) above. By applying the tests in this way one is able to

examine the specific nature of the driving forces behind the variation in the parameters in

(1). So, for instance, to examine the significance of the intraday variation in the own lagged

return coefficient, one restricts all parameters associated with this coefficient within the S1

scaling factor set to equal zero. The resulting Wald statistics for all variants of the scaling

factor sets and selected coefficient groups are given in Table III.
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Insert Table III here

The first thing to note from the results is that all coefficients in the unscaled version

of the model are significant (at the 1% level), except for the own lagged return coefficient.

Similarly, all coefficients in the scaled version of the model are also significant (at the 1%

level), with the exception of the own lagged return coefficients in the iShares ETF share and

E-mini futures markets. The results in the table also permit an evaluation of the marginal

contribution of the scaled version of the model over the unscaled version. This is achieved

by testing the significance of the restriction that all the parameters in the scaling factor

sets equal zero; equivalently, by testing the significance of all the coefficients in the scaled

version that do not appear in the unscaled version. In doing this, we find that the parameters

in the scaling factor sets are highly significant. Indeed, only the scaled own lagged return

coefficients in the iShares ETF share and E-mini futures markets are insignificant.

The results also highlight a number of features underlying the dynamics of the param-

eters in (1). With regards to the individual scaling factor sets, the results indicate that,

overall, the coefficients are significantly related to the space spanned by each of the scaling

factor sets. However, analysis of particular subsets of the coefficients within each scaling

factor set reveals interesting performance differences. Most notably, the vast majority of the

coefficients within the liquidity-based scaling factor set appear to be significant, while vari-

ation in the majority of coefficients within the macroeconomic announcement period appear

to be insignificant. Thus, with respect to the null hypothesis, H2
0, the evidence points to

a rejection of this hypothesis for all scaling factor sets, with the possible exception of the

macroeconomic announcement scaling factor sets. The impact of these observations (if any)

upon price discovery is examined in the subsequent analysis.

B. Price discovery and trading system design
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The next stage of the analysis involves examining the relative amount of price discov-

ery in each of the constituent markets. To this end, the four main augmented measures of

relative price discovery described in Section I (and Appendix A) are calculated, viz., the aug-

mented Harris et al (2002) component share measure (f1t); the augmented Hasbrouck (1995)

information share measure (f2t); the augmented de Jong and Schotman (2005) information

share measure (f3t); and the augmented Yan and Zivot (2006a) standardized price discovery

measure (−sf4K,t) – all of which are based on the scaled version of the equilibrium correction

model given by (1). In addition, non-augmented (unscaled) versions of these measures are

calculated, with the non-augmented (unscaled) version of the equilibrium correction model

used to obtain the relevant parameter values.24

Further enhancements to the estimation of price discovery are necessary as the residuals

from (1) exhibit significant conditional heteroscedasticity; see the ARCH test statistics in

Table II. Specifically, we model the residuals from (1) using the dynamic conditional cor-

relation (DCC) multivariate generalized ARCH (GARCH) model of Engle (2002).25 The

simplistic implementation and relative parsimony of this model is particularly useful in the

current context as a very large number of observations are considered in the context of a

complex multivariate model.26

The estimated measures of relative price discovery (and intra-market differences therein)

based on the above assumptions are presented in Table IV. To give an indication of the

magnitude of the augmented versions of relative price discovery, the time-series averages

of these measures are presented. Moreover, as the ordering of the five equations in (1)

affects certain measures of non-augmented and augmented price discovery, all measures are

estimated for each of the 120 possible orderings (i.e., permutations) of the five constituent

markets, with the mean relative price discovery (over all orderings) presented.27
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Insert Table IV here

Inference regarding the price discovery measures is obtained via a simple bootstrap pro-

cedure. Specifically, for each permutation of the equation orderings, returns are generated

according to (1), with parameters given by the original estimated parameters, and errors

given by a random sample of the original residuals. This procedure is repeated 1,000 times

with the estimated parameters (including time-varying estimates of the conditional variance-

covariance matrix) obtained during each repetition used to generate bootstrap estimates of

the measures of relative price discovery. These estimates are then averaged over all permuta-

tions of the equation orderings and also, in the case of the scaled versions of price discovery,

averaged over the sample period to given the time-series mean relative price discovery mea-

sures. Finally, these estimates are used to form the confidence intervals that are used to

draw inference regarding whether relative price discovery is significantly different from some

benchmark value within each constituent market, and whether there are significant differ-

ences amongst relative price discovery across the constituent markets.

The results in Table IV indicate that the index and the E-mini futures markets are the

two dominant constituent markets, with all unscaled, and most scaled relative price discovery

measures significantly greater than those expected if relative price discovery were uniformly

distributed across all constituent markets (i.e., greater than 1/M), and significantly different

from relative price discovery in the other constituent markets. Therefore, with respect to

the hypothesis H3
0 in Section II, it appears that trading system design does have an effect on

price discovery. Specifically, the superiority of the electronic E-mini market over all other

single security (i.e., not the index) constitutional markets points to a rejection of this null

hypothesis – a result that is similar to that obtained by previous investigators (Hasbrouck,

2003, Ates and Wang, 2004, and Kurov and Lasser, 2004).
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C. Price discovery and information asymmetry

The nature of the augmented (scaled) price discovery measures considered in this paper

make it possible to analyze explicitly the relationship between price discovery and the degree

of information asymmetry. This is achieved by examining these measures over the space

spanned by the scaling factor sets, and over pre-defined pairs of events based on this space.

The pairs of events considered in the paper are designed to capture major differences in the

degree of information asymmetry that exists in a particular constituent market. Specifically,

we consider the intraday opening and closing of each market, high versus low relative liquidity,

and the period before and after a macroeconomic announcement.

The plots in Figure 1 show the conditional mean of the augmented version of Hasbrouck’s

(1995) measure of relative price discovery over the trading day, over the maturity cycle of

the futures contracts, as a function of E-mini futures market liquidity, and thirty minutes

before and after a pre-10.00 a.m. macroeconomic announcement.28 These plots are obtained

by taking the conditional mean of the measures at each point within the space spanned by

the scaling factor sets. For instance, the intraday plot in Figure 1 gives the conditional mean

of each of the relative price discovery measures during each minute of the trading day.

Insert Figure 1 here

It is evident from these plots that there exists a considerable amount of variation within

the spaces spanned by the scaling factor sets. Most notably in this regard, price discovery

appears to vary positively (and non-linearly) with the degree of information asymmetry.

For instance, during periods of low liquidity in the E-mini futures market, most prices are

discovered in the market for constituent shares (as revealed by the index). By contrast, when

the E-mini futures market is highly liquid, this market dominates all other markets in terms

of price discovery.29 A similar conclusion can be drawn when considering the period around
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macroeconomic announcements. During the period prior to the announcement, the market

for constituent shares dominates all other markets. However, at the precise point in time when

the announcement is made, the E-mini futures market takes over as the dominant market.

Thus, if one assumes that the vast majority of informed trades take place immediately after

(and not before) the release of macroeconomic information, then this result supports the

notion that price discovery in markets based on electronic trading systems is positively related

to the degree of information asymmetry.30

To formally test the above conjecture regarding price discovery and the degree of informa-

tion asymmetry, a series of tests are conducted that are designed to examine the differences

between the conditional means of the price discovery measures across events characterized by

extreme trading behavior. In all cases, inference is based on the bootstrap samples obtained

previously. The results of these procedures are presented in Table V (market open-close vari-

ation), Table VI (low-high liquidity variation), and Table VII (before-after announcement

variation), where the market open period is defined as the first fifteen minutes of trading after

the start of trading in the major S&P 500 markets, the market close period is defined as the

last fifteen minutes of trading prior to the end of trading in the major S&P 500 markets, low

(high) liquidity is defined as all liquidity amounts below (above) the median level of liquidity

in the E-mini futures market, and the before (after) announcement period is defined as the

five minute period prior to (after) a macroeconomic announcement.

Insert Table V here

The results in Table V indicate that for the majority of the price discovery measures,

the E-mini futures market is the most informative of all the constituent markets during

the market open period, while the second most informative is the market for constituent

shares. By contrast, this ranking is reversed at the close of trading, with the latter market
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being the dominant market in terms of price discovery. Moreover, during the market open

period, most of the E-mini futures price discovery measures are significantly greater than the

measures observed in the market for constituent shares, with the exact reverse holding during

the market close period. Combining this finding with the empirical evidence of Barclay and

Hendershott (2003) and Ting (2006) who both find that the degree of information asymmetry

decreases over the trading day, one can interprete this as evidence in favor of the argument

that price discovery in operationally efficient markets (e.g., the E-mini futures market) is

positively related to the degree of information asymmetry.

Insert Tables VI & VII here

Similar evidence is found in Table VI and Table VII. Specifically, the results in Table

VI indicate that price discovery in the E-mini futures market is significantly higher during

periods of high liquidity than during periods of low liquidity. Moreover, this market becomes

the dominant price discovery market (according to two of the four price discovery measures

considered) during periods of high liquidity. These results are consistent with the argument

that markets based on electronic trading systems (i.e., the E-mini futures market) are the

preferred choice of informed traders providing that liquidity is sufficiently high (equivalently,

trading costs are sufficiently low). Similarly, the results in Table VII show that during periods

of high information asymmetry (i.e., immediately after the announcement of price sensitive

news), the E-mini futures market becomes the dominant price discovery market (according

to three of the four price discovery measures considered). Therefore, the collective evidence

in Tables V, VI, and VII, points to a rejection of the null hypothesis given by H4
0 that relative

price discovery does not co-vary with the degree of information asymmetry. Rather, relative

price discovery appears to significantly co-vary with variables that measure the degree of

information asymmetry.
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D. Price discovery, information asymmetry, and liquidity

It could be argued that the results in Tables V, VI, and VII are flawed in that the results

may be driven by contemporaneous variable correlation across the event pairs. For example,

the results regarding the difference in relative price discovery over the market open and close

periods may be driven by variation in liquidity over these periods. To remedy this potential

shortcoming, we increase the dimension of the conditionality by further subdividing the event

pairs. Specifically, each time period within the market open and close periods is subdivided

according to whether the time period was characterized by low or high levels of liquidity.

The conditional means of the price discovery measures are then calculated in each of these

four new time periods. The resulting conditional mean measures of relative price discovery

are given in Table VIII.

Insert Tables VIII & IX here

The results in Table VIII indicate that during periods when the degree of information

asymmetry is likely to be at its highest (i.e., during the market open period), the E-mini

futures market is the dominant constituent price discovery market only when the market

is highly liquid (i.e., trading costs are low). Thus, this result provides further support for

the argument that markets based on electronic trading systems are the preferred choice of

informed traders providing that liquidity is sufficiently high. Similar evidence is provided in

Table IX, where the before and after macroeconomic announcement periods are subdivided

into periods of low and high liquidity. Specifically, only immediately after an announcement

and when the market is relatively liquid do informed traders appear to prefer to trade on

electronic trading systems.

E. Aggregate price discovery
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Thus far the analysis has focused on relative price discovery in markets than compete for

order flow. In doing this we have provided empirical evidence to show that particular markets

are favored by informed traders under certain conditions. Most notably, electronic markets

are preferred during periods of extreme information asymmetry and high liquidity. However,

this analysis has ignored the possibility that price discovery may uniformly increase (or

decrease) across all constituent markets. To remedy this potential shortcoming we consider

an aggregate measure of price discovery; specifically, the sum of the log of the augmented

Yan and Zivot (2006a) price discovery measure over all constituent markets.31

Insert Figure 2 here

The conditional means of the above measure are calculated using the space spanned by

selected scaling factor sets, and the three event pairs considered previously. The results asso-

ciated with aggregate price discovery around pre-10.00a.m. macroeconomic announcements

are represented diagrammatically in Figure 2. It is clear from this particular plot that aggre-

gate price discovery falls dramatically before the announcement and increases immediately

after the release of the information. Likewise, when the conditional means are calculated

for each event pair considered previously (see Tables V, VI, VII, VIII, and IX, for these

aggregated price discovery measures), the results lead to a similar conclusion. Indeed, the

results in Tables VIII and IX confirm the previous result that informed trading appears to be

concentrated in the market open and post-announcement periods only when markets are rel-

atively liquid. However, the results are not significant even at the 10% level. Thus, though

the evidence is suggestive, it does not enable a clear rejection of the null hypothesis, H5
0,

concerning the relationship between aggregate price discovery and the degree of information

asymmetry.
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V. Concluding remarks

The multivariate model of fragmented market returns introduced in this paper differenti-

ates itself from competing models in its treatment of time in the arbitrage process. Existing

models assume that the propensity-to-arbitrage (as given by the coefficients on past mispric-

ings) is constant. However, when these coefficients are scaled, they are found to covary with,

inter alia, measures of the degree of information asymmetry and liquidity. Moreover, this

model provides a superior representation of the S&P 500 data considered in this paper.

Having established that the model introduced in this paper most likely represents the

dynamics of returns in fragmented markets, the paper proceeds by using this model to obtain

measures of relative and aggregate price discovery in the S&P 500 market. As these measures

are (significantly) functionally dependent upon the coefficients of the underlying model via

a set of scaling factors, then the measures themselves are also dependent upon these factors.

Indeed, this dependence is shown to cast light on important aspects of trading on competing

systems. Specifically, most price discovery appears to occur in the market for the stocks

making up the index and in the (electronically traded) E-mini futures market. However,

the operational efficiencies inherent in the E-mini futures market result in it becoming the

dominant price discovery market under two conditions: extreme information asymmetry and

high liquidity – a finding that supports theoretical arguments proposed in related literature,

particularly those recently advocated by Ates and Wang (2004, 2005).
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Appendix A: Derivations of augmented price discovery mea-

sures

This appendix contains derivations of the augmented price discovery measures used in this paper. These derivations

are divided into three parts. The first part establishes the equivalence between an augmented version of Hasbrouck’s

(1993) unobservable efficient price model, and the equilibrium correction model given by (1). Then, explicit expressions

for the coefficients in these models are derived and subsequently used to define the price discovery measures given in

the final part of the appendix.

A.1 Derivation of the efficient price model

The econometric model used in this paper can be expressed in terms of the following multivariate (time-varying

parameter) version of Hasbrouck’s (1993) univariate (time-invariant) unobservable components efficient price model,

pt = Dt + mt + υt, (A.1a)

mt = mt−1 + ηP
t , (A.1b)

υt = γtη
P
t + ζt, (A.1c)

where Dt represents all deterministic terms; mt is the unobservable common fundamental full-information asset price,

which Hasbrouck (1995) refers to as the efficient price; υt is an (M × 1) vector of stationary pricing error terms;

ηP
t is the permanent innovation; γt is an (M × 1) parameter vector; ζt|It−1 ∼ D(0M×1,Ωt); and observed price

innovations (obtained by substituting (A.1b) and (A.1c) into (A.1a)) are given by υ∗t = (γt + 1M×1)ηP
t + ζt, with

υ∗t |It−1 ∼ D(0M×1,Υt). This model states that, excluding deterministic terms, the observed price in each of the M

constituent markets equals the efficient price plus a market-specific stationary pricing error, with the efficient price

following a random walk subject to a permanent innovation that, in turn, has a time-varying relationship with the

stationary pricing error.

To see the equivalence between the above model and (2), firstly consider the following Wold representation of ∆pt:

∆pt = θ0t + θt(L)εt = θ0t + θ1tεt + θ2tεt−1 + · · · (A.2)

where the matrix polynomial θt(L) has full rank, with θ1t = IM , and (M ×M) coefficient matrix elements {θkt}∞k=1

that are 1-summable. The importance of this representation in the current context can be demonstrated by applying
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the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981) to θt(L) and iterating through time,

pt = D(θ0t) + θt(1)
t∑

j=1

εj + νt, (A.3)

where D(θ0t) represents all deterministic terms with functional dependence, inter alia, upon θ0t; νt is an (M × 1)

vector of stationary pricing error terms given by
(
(θt(L) − θt(1))(1 − L)−1

)
εt; and θt(1) measures the cumulative

impact of all past and present εt on the current price with rows that are identical to each other. Given this definition

of θt(1), and without loss of generality, the subsequent analysis is based on the 1st row of θt(1) transposed to yield

an (M × 1) ‘long-run impact’ column vector defined as θt := [θt(1)]′
(1,1:M)

, where superscripted square parentheses

indicates the selection of specific rows and columns of the matrix therein.

Furthermore, it is also possible to express (2) as a function of a common stochastic trend via the decomposition

proposed by Stock and Watson (1988); specifically,

pt = D(θ0t) + mt + νt, (A.4a)

mt = mt−1 + ηP
t , (A.4b)

where the permanent innovation, ηP
t , is given by θ′tεt; and E(νtηP

t |It−1) = 0, hence γt = 0 ∀ t ∈ {1, . . . , T}. Thus,

we obtain a representation analogous to that given in (A.1a), (A.1b), and (A.1c), whereby prices in each of the M

constituent markets is composed of, inter alia, a common efficient price, and a set of N orthogonal transitory pricing

errors. Moreover, this efficient price evolves as a random walk driven by the arrival of new information concerning the

asset’s future value (i.e., the permanent innovation, ηP
t ).

An alternative way of deriving the representation given by (A.1a), (A.1b) and (A.1c) is to directly imposed the

Beveridge-Nelson restriction on the reduced form version of this representation. In doing this we obtain ηP
t = θ′tεt,

Var(ηp
t |It−1) = θ′tΣtθt; with parameter expressions,

γt =
Σtθt

θ′tΣtθt
− 1M×1, (A.5a)

Ωt = Σt − Σtθtθ
′
tΣt

θ′tΣtθt
, (A.5b)

where γt takes the maximal permissable value for each t; see Appendix A of de Jong and Schotman (2005) for proof of

this result in the case of the time-invariant parameter (i.e., unscaled) unobserved components model. As will shown in

subsection A.3, this particular representation forms the basis of an alternative measure of price discovery considered in

this paper.

Finally, a third approach is possible in order to derive the representation given by (A.1a), (A.1b), and (A.1c).
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Specifically, Yan and Zivot (2006a) propose use of an (unscaled) structural moving average model with innovations

separated into those that are have a permanent impact on prices, and those that have a transitory impact on prices.

As with previous derivations, this model is also augmented in the current application to allow for time variation in the

coefficients. This is achieved via use of the following linearly scaled structural vector moving average model:

∆pt = θ∗0t + θ∗t (L)ηt = θ∗0t + θ∗1tηt + θ∗2tηt−1 + · · · (A.6)

where the matrix polynomial θ∗t (L) has full rank, with {θ∗1t} 6= IM , and (M×M) coefficient matrix elements {θ∗kt}∞k=1

that are 1-summable; and ηt := (ηP
t , ηT

t )′, with ηt|It−1 ∼ D(0,Σ∗t ), such that Σ∗t is a variance-covariance matrix

with the variances of ηt on the diagonal, and zeros elsewhere. It is a trivial matter to show that ηP
t has a one-to-one

long-run effect on the price of each asset, while ηT
t has no long-run effect on the price of each asset – both of which

imply that θ∗t (1) = (1M×1

..

.0M×1).

By applying the Beveridge-Nelson decomposition to (A.6), one can demonstrate the similarities (and differences)

between the linearly scaled structural moving average and equilibrium corrections models; specifically, (A.6) becomes

pt = D(θ∗0t) + θ∗t (1)
t∑

j=1

ηt + νt = D(θ∗0t) + mt + ν∗t , (A.7a)

mt = mt−1 + ηP
t , (A.7b)

where the (M × 1) vector of stationary pricing error terms ν∗t is given by
(
(θ∗t (L) − θ∗t (1))(1 − L)−1

)
ηt. As is clear

from (A.7a) and (A.7b), prices are determined by a common efficient price, with the same permanent innovation, ηP
t ,

as in the model given by (A.4a) and (A.4b). However, the two models differ in that transitory pricing errors are now a

function of ηt, implying that γt may differ from zero and thus pricing errors may be a function of the arrival of new

information.

A.2 Deriving coefficient expressions

Having established the relation between the unobservable efficient price model given by (A.1a), (A.1b), and (A.1c),

and the equilibrium model given by (1), this subsection proceeds with derivations of the expressions for the individual

components in the subsequently defined price discovery measures. Most notably, the coefficients in the directly unob-

servable Wold representation of the equilibrium correction and structural moving average models, given by (A.2) and

(A.6), respectively. In each case, these coefficients are necessarily functions of the directly observable coefficients in the

linearly scaled equilibrium correction model given by (2).

In the spirit of Yan and Zivot’s (2006a) derivation of their time-invariant price discovery measure, the first step

toward deriving explicit expressions for the coefficients in (A.2), and also θt(1), is to rewrite (2) as a first-order process;
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specifically,
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, (A.8)

or in compact form:

∆p̃t = Ψ̃0t + Ψ̃t∆p̃t−1 + ε̃t, (A.9)

where covariance-stationarity at time t is assured if all the eigenvalues of the Q-dimension square matrix Ψ̃t lie inside

the unit circle; equivalently, in terms of spectral radius, we require that %(Ψ̃t) < 1. By repeated substitution in (A.9)

we obtain,

∆p̃t = Ψ̃0t +

k−1∑

h=1

(
h∏

h∗=1

Ψ̃t−h∗+1

)
Ψ̃0t−h +

(
k∏

h=1

Ψ̃t−h+1

)
∆p̃t−k

+

(
k−1∏

h=1

Ψ̃t−h+1

)
ε̃t−k+1 +

(
H−1∏

h=1

Ψ̃t−h+1

)
ε̃t−k+2 + . . . + Ψ̃tε̃t−1 + ε̃t, (A.10)

with coefficient matrix elements of θt(L) given by θ1t = IM ,

{θkt}∞k=2 :=
∂∆pt

∂εt−k+1
=

[
k−1∏

h=1

Ψ̃t−h+1

]

(1:M,1:M)

+

[
k−1∏

h=1

Ψ̃t−h+1

]

(1:M,Q−N+1:Q)

β′, (A.11)

and long-run impact matrix θt(1) given by

θt(1) :=
∞∑

k=1

θkt = IM +

[ ∞∑

k=2

k−1∏

h=1

Ψ̃t−h+1

]

(1:M,1:M)

+

[ ∞∑

k=2

k−1∏

h=1

Ψ̃t−h+1

]

(1:M,Q−N+1:Q)

β′, (A.12)

where, without loss of generality, the long-run impact vector can be redefined as the (M×1) vector θt := [θt(1)]′
(1,1:M)

.

To obtain an expression for the coefficients in (A.6), we first apply the Gonzalo and Ng (2001) decomposition to

calculate the permanent and transitory innovations from the errors in the linearly scaled equilibrium correction model,

ξt := Btεt, (A.13)
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where ξt := (ξP
t , ξT

t )′; and Bt := (θt

.

..β)′, with the elements of Bt, specifically θt, such that the permanent innovation,

ξP
t , has a unit long-run impact on prices. To orthogonalize these errors, we again follow Gonzalo and Ng (2001) and

define the errors in the structural moving average models as

ηt := C−1
t ξt, (A.14)

where Ct is a unique lower triangular matrix with ones along the principal diagonal such that CtDtC′t = Σt, and Dt

is a unique diagonal matrix with positive entries along the principal diagonal. Combining the above results with the

Wold representation of the linear scaled equilibrium correction model we see that

∆pt = θ0t + θt(L)εt

= θ0t + θt(L)B−1
t CtC

−1
t Btεt

= θ∗0t + θ∗t (L)ηt, (A.15)

where θ0t ≡ θ∗0t; ηt := C−1
t Btεt; and thus

θ∗t (L) = θt(L)B−1
t Ct, (A.16)

with coefficient matrix elements in the matrix polynomial θ∗t (L) given by

{θ∗kt}∞k=1 = {θktB
−1
t−k+1Ct−k+1}∞k=1. (A.17)

A.3 Defining price discovery

The first two price discovery measures considered in this paper are based explicitly on the linearly scaled long-run

impact matrix associated with the equilibrium correction model given in (2). The relevance of this matrix in the current

context can by seen in (A.4a) and (A.4b). These equations show that the permanent innovation, ηP
t , to the efficient

price impounds new information regarding the fundamental value of the asset. Moreover, as this innovation is given

by θ′tεt then the importance of the long-run impact matrix becomes evident. This relevance motivates the component

share measure of relative price discovery proposed by Harris et al (2002). However, their measure is augmented in the

current paper to take into account the time-varying nature of the long-run impact matrix; specifically, we consider the
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following linearly scaled version of their measure based on the long-run future impact matrix:

f1t :=
θf

t

11×Mθf
t

, (A.18)

where f1t is an (M × 1) vector of relative price discovery measures that has elements that contain each constituent

market’s share in the composition of the permanent innovation to the efficient price; 11×M f1t = 1; and θf
t is defined as

θf ′
t :=

[ ∞∑

k=1

∂∆pt+k−1

∂εt

]

(1,1:M)

=

[ ∞∑

k=1

θkt+k−1

]

(1,1:M)

. (A.19)

The first stage toward obtaining an implementable definition of θf
t involves making use of the expression for

the long-run impact matrix given by (A.12). Using this expression leads to the following expression for the second

summation term in (A.19):

∞∑

k=1

θkt+k−1 = IM +

[ ∞∑

k=2

k−1∏

h=1

Ψ̃t+k−h

]

(1:M,1:M)

+

[ ∞∑

k=2

k−1∏

h=1

Ψ̃t+k−h

]

(1:M,Q−N+1:Q)

β′, (A.20)

where Ψ̃t is a Q-dimension compact matrix of time-dependent coefficients given by (A.8) and (A.9). To obtain an

analytical solution to the above expression, we assume that for each t,

Ψ̃t+k−h = Ψ̃t, ∀ k − h ∈ N. (A.21)

Though this assumption is somewhat restrictive, it does yield an implementable estimate of the long-run future impact

matrix at time t based on the ceteris paribus assumption that the currently observed coefficient values will hold for all

future time periods. Consequently, it can be interpreted as an instantaneous measure of the long-run future impact

matrix at time t. Substituting (A.21) into (A.20) eventually leads to the following analytical definition for the long-run

future impact matrix at time t:

θf ′
t :=

[[
G(Ψ̃t)

]
(1:M,1:M)

+
[
G(Ψ̃t)

]
(1:M,Q−N+1:Q)

β′
]

(1,1:M)

, (A.22)

where G(Ψ̃t) = (IQ− Ψ̃t)−1. Thus, we have a useable measure of price discovery, where a high (low) component share

value at time t implies that an unexpected price change in a particular constituent market at time t has, on average, a

high (low) impact upon the unexpected change in the efficient price at time t; consequently, prices are generally (not)

discovered in this market at time t.
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As with the component share measure, the information share measure of relative price discovery originally proposed

by Hasbrouck (1995) is based on the long-run impact matrix associated with the linearly scaled equilibrium correction

model given by (2). However, it differs in that it measures the contribution of an unexpected price change in a particular

market to the total variance of the permanent innovation; thus, the linearly scaled version of Hasbrouck’s (1995) measure

is given by

f2t :=
A′

tθ
f
t

θf ′
t Σtθ

f
t

, (A.23)

where f2t is an (M × 1) vector of relative price discovery measures; At is the lower triangular matrix such that

AtA′
t = Σt; θf

t is functionally dependent on Ψ̃t as described by the expression in (A.22); and 11×M f2t = 1. In

this instance, a high (low) information share value at time t implies that an unexpected price change in a particular

constituent market at time t is likely to have a high (low) impact upon the variance of the unexpected change in the

efficient price at time t; consequently, prices are generally (not) discovered in this market at time t.32

As with Hasbrouck’s (1995) measure, de Jong and Schotman (2005) define the information share of a market in

terms of the proportion of the efficient price variance explained by observed price innovations. However, rather than

using the somewhat arbitrary Cholesky decomposition of Σt to attribute covariance terms to each market as in (A.23),

they define price discovery directly within the unobserved components model given by (A.1a), (A.1b), and (A.1c). To

obtain a scaled version of their measure, one takes conditional variances of both sides of

ηp
t = γ∗′t υ∗t + ςt, (A.24)

to give

Var(ηp
t |It−1) = Var(γ∗′t υ∗t |It−1) + Var(ςt|It−1), (A.25)

where ςt|It−1 ∼ D(0, σ2
ςt

) and E(υ∗t ςt|It−1) = 0, ∀ t ∈ {1, . . . , T}. It follows that the vector of scaled de Jong-Schotman

information shares is given by

f(γ∗t ,Υt, σ
2
ςt

) :=
Var(γ∗′t υ∗t |It−1)

Var(ηP
t |It−1)

=
γ∗′t ¯Υtγ∗t

γ∗′t Υtγ∗t + σ2
ςt

, (A.26)

where Var(ηP
t |It−1) ≡ σ2

ςt
. Under the Beveridge-Nelson implied parameter values associated with the unobserved

components model given in (A.5a) and (A.5b), we find that Var(ηp
t |It−1) = Var(γ∗′t υ∗t |It−1) = θ′tΣtθt, hence we

obtain the vector of scaled relative price discovery measures

f3t :=
θf

t ¯Σtθ
f
t

θf ′
t Σtθ

f
t

, (A.27)
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where f3t is an (M × 1) vector of relative price discovery measures; θf
t is again given by the expression in (A.22); and

11×M f3t = 1 as Var(ςt|It−1) = 0. It is noticeable that this particular definition of price discovery relies on the same

parameter space as the vector of information shares defined in (A.23). However, they differ in that the latter avoids

use of an arbitrary Cholesky decomposition in favor of the covariance structure implied by the unobserved components

model.

The fourth of the price discovery measures considered in this paper is based on the linearly scaled structural moving

average model given by (A.6). Specifically, Yan and Zivot (2006a) use the coefficients in an unscaled version of this

equation to derive a relationship between future price changes in a particular constituent market and changes in the

permanent innovation to the common efficient price. In the current paper, this is achieved by constructing an impulse

response function, which, in the presence of linear scaling is given by

f(θ∗kt; K̃) : =
K̃∑

k=1

∂E[∆pt+k−1|It]

∂ηP
t

=

[
K̃∑

k=1

θ∗kt+k−1

]

(1:M,1)

, K̃ = 1, 2, . . . (A.28)

where f(θ∗kt; K̃) ∈ RM , ∀ K̃ ∈ N. By noting the result given in (A.16), the second summation term in (A.28) can be

expressed as

K̃∑

k=1

θ∗kt+k−1 =
K̃∑

k=1

θkt+k−1B
−1
t Ct; (A.29)

moreover, by imposing the assumption given in (A.21), f(θ∗kt; K̃) can eventually be expressed in the following analytical

form:

f(Ψ̃t,Σt; K̃) =

[([
G(Ψ̃t; K̃)

]
(1:M,1:M)

+
[
G(Ψ̃t; K̃)

]
(1:M,Q−N+1:Q)

β′
)
B−1

t Ct

]

(1:M,1)

, (A.30)

where G(Ψ̃t; K̃) = (IQ − Ψ̃
K̃
t )(IQ − Ψ̃t)−1; Bt := (θf

t

..

.β)′; Ct is a unique lower triangular matrix with ones along

the principal diagonal such that CtDtC′t = Σt, and Dt is a unique diagonal matrix with positive entries along the

principal diagonal. This definition of price discovery efficiency loss provides a measure of the deviation of prices in

each constituent market from equilibrium when a shock to the permanent innovation to the common efficient price

occurs – all of which is measured as a function of the time since the shock occurred. Moreover, as ηP
t has a one-to-one

long-run effect on the prices in each constituent market, then these deviations can be compared with each other across

all markets. Consequently, for markets in which a large amount price discovery occurs, deviations from unity are likely

to be short-lived. By contrast, if a constituent market does not generally discover the efficient price then deviations

from unity are likely to be persistent.

To summarize the information in the above expression, the function can be summed over a range of values of
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K̃ and a suitable symmetric loss function can be applied to the resulting vector to give a summary measure of price

discovery efficiency loss, that is,

f4K,t :=
K∑

K̃=1

L
(
f(Ψ̃t,Σt; K̃)− 1

)
, (A.31)

where f4K,t is an (M×1) vector of price discovery efficiency loss measures; K is sufficiently large such that f(Ψ̃t,Σt; K) ≈

1; L(.) is a symmetric loss function to be selected by the investigator; and 11×M f4K,t ∈ R, ∀K ∈ N. Unlike the first

three measures of price discovery given in (A.18), (A.23), and (A.26), the dynamic nature of the design of the measures

defined in (A.30) and (A.31) is such that it takes into consideration the “who moves first” dimension of the price

discovery measurement problem. Thus, these measures appear to provide more information regarding the nature of the

price discovery process despite relying on the same parameter space as the price discovery measures given by (A.23)

and (A.26).

In addition to the above measures, we also consider two variants on these measures. Specifically, the f4K,t measure

of price discovery efficiency loss can be used to provide a standardized (relative) measure of price discovery efficiency

loss that sums to unity over all constituent markets, and an aggregate measure of price discovery efficiency loss for the

asset under consideration. These measures are obtained via the expressions,

sf4K,t :=
f4K,t

11×M f4K,t
, (A.32)

af4K,t := 11×M f4K,t, (A.33)

where sf4K,t is an (M × 1) vector of standardized (relative) price discovery efficiency loss measures, and af4K,t is an

aggregated measure of price discovery efficiency loss.
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Notes

1This is exemplified by the recent acquisition of the Archipelago electronic trading network by the New

York Stock Exchange (NYSE).

2Hasbrouck (1995) defines market fragmentation as the ‘dispersal of trading in a security [or securities

that may be technically distinct, but are closely linked by arbitrage or short-term equilibrium considerations]

to multiple sites’.

3See Kyle (1985) and Foster and Viswanathan (1996) for theoretical motivation for the relationship between

asymmetric information and asset prices.

4A similar theoretical model is introduced by Back and Pedersen (1998); however, they relax the somewhat

implausible assumption adopted in the Admati-Pfleiderer model that the number of agents collecting informa-

tion varies systematically over the trading day. This is achieved by allowing the intensity with which agents

trade on information to vary systematically – an assumption made possible by allowing private information

to be long-lived.

5The functional form of (2) means that coefficients on past returns from each of the constituent markets are

also assumed to be dependent on the set of scaling factors. In addition to the usual microstructure motivation

(e.g., bid-ask bounce over the trading day), this dependence (at least for the coefficient on lagged returns

observed in the same constituent market) can also be motivated with reference to the rational equilibrium

model of Campbell et al (1993). Specifically, this model predicts that non-informed trading causes price

movements that, when absorbed by liquidity suppliers, causes prices to revert. Moreover, non-informed

(informed) trading will be accompanied by high (low) trading volume. Therefore, price changes accompanied

by high (low) trading volume should (should not) revert. Empirical support for this argument is provided by

Conrad et al (1999), and Avramov et al (2006). Indeed, the latter study demonstrates that the argument is

valid when it is extended to include measures of liquidity instead of trading volume.

6The component share and information share measures are relative in that they measure the proportional

allocation of price discovery across the constituent markets, i.e., they sum to unity.

7This paper makes use of a wide range of price discovery measures and does not attempt to differentiate

between the quality of each. Rather, the subsequent analysis treats each with uniform emphasis and, as such,

avoids criticisms of favoritism for one measure over another. See Baillie et al (2002), de Jong (2002), and

Yan and Zivot (2006b), for explicit discussions regarding the similarities amongst, and differences between,
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non-augmented versions of these measures.

8A similar comparison can be made between the other augmented versions of the price discovery measures

and their non-augmented counterparts.

9Related results found by Huang (2002) and Barclay and Hendershott (2003) show that electronic commu-

nications network (ECN) quotes in NASDAQ stocks are more informative that the quotes posted by dealers.

10Though the high frequency impact of macroeconomic announcements upon financial markets has been

previously studied (see, e.g., Andersen et al, 2005), this is the first time their impact has been examined with

respect to price discovery.

11The iShares ETF shares have recently switched to the NYSE. However, during the sample period used in

this paper these shares traded on the AME.

12The S&P 500 E-mini futures market is not open 24 hours a day. Rather, it closes over the periods: 3:15

p.m. to 3:45 p.m. (Monday to Thursday), and 3:15 p.m. (Friday) to 5:30 p.m. (Sunday).

13Further details of the macroeconomic series included in the sample are available upon request.

14The E-mini market trade unit is $50 times the index level, while the regular market trade unit is $250

times the index level.

15The function fs(t) is defined such that

(ts, t) := (1, 1), (2, 2), . . . , (Ts − 1, Ts − 1), (Ts, Ts), (1, Ts + 1), (2, Ts + 2), . . . , (Ts, T ).

16Though few studies have used this functional form in the context of equilibrium correction models, it

has been used extensively in trade duration models. Most notably, cubic splines have been successfully

incorporated into a variety of autoregressive duration (ACD) models (see, e.g., Engle and Russell, 1995, 1998,

Zhang, Russell and Tsay, 2001, and Taylor, 2004). It is also possible to use the flexible Fourier form (FFF)

to model the periodicity of the parameter space. This functional form has been used to model intraday

return volatility dynamics (see, e.g., Andersen and Bollerslev, 1997, 1998). Though the FFF specification is

parsimonious and allows for smooth dynamics, it is somewhat rigid in functional form and, therefore, may

not be able to capture complex dynamics. For this reason the FFF specification is not used in the current

application.

17See Ates and Wang (2004, 2005) for empirical evidence regarding the relationship between price discovery

and various measures of liquidity.
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18Trade intensity in the subsequent analysis is defined as the logarithm of one plus one tenth the number

of trades in the E-mini futures market. Use of this transformation yields a higher degree of model fit than

when no transformation is applied or when other transformation of these data are considered. Further details

of these results are available upon request.

19We also considered the fifteen minute and one hour periods before and after the announcements. However,

the models based on these assumptions exhibited a less satisfactory level of model fit. Further details of these

results are available upon request.

20Though the model is actually a system of equations, each equation contains the same RHS variables.

Therefore, the parameters of the model can be efficiently estimated by single equation OLS.

21Details associated with the estimated models based on all parameter values within the space considered

are available upon request.

22A scaled mean version based on the unexpected change in each of the macroeconomic variables (at the time

of the announcement) was also considered. Despite its intuitive appeal, the results proved to be insignificant.

For this reason we do not present the results pertaining to this particular scaling factor. Further details are

available upon request.

23Details pertaining to all estimated parameters (including plots of the parameters over the scaling factor

spaces) are available upon request.

24The estimates based on the Yan and Zivot (2006a) efficiency loss measure in (A.31) assume that K = 30,

and L(.) is given by a quadratic loss function. Selection of this value for K is such that it is sufficiently large

to capture the full dynamic responses of shocks to each of the constituent market equations, while the use

of quadratic loss function yields similar results to those obtained when an absolute loss function is assumed.

The results pertaining to the latter loss function are available upon request.

25In modeling the residuals in this way, we are allowing for functional dependence between relative price

discovery and relative volatility in (and between) each constituent market. This is because relative volatility

is used as an input in most of the measures of price discovery considered in this paper; see, e.g., (A.23) in

Appendix A. This represents an improvement in the modeling of price discovery given the previous evidence

of a difference in relative price discovery during periods of high and low volatility (Ates and Wang, 2004).

26The simplicity of this approach lies in the fact that the estimation process in broken down into three

separate procedures. First, the residuals from (1) are (consistently) obtained using OLS. Then, the het-

eroscedasticity in these residuals is modeled via the application of individual GARCH models. And finally,
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a parsimonious parametric model for the correlations is then applied to deliver estimates of the conditional

variance-covariance matrix – estimates of which are used as inputs in the price discovery formulae. Further

details of the DCC-GARCH model estimated in this paper are available upon request.

27The use of all permutations of the equation orderings was originally proposed by Hasbrouck (1995).

28Plots associated with the other augmented measures of relative price discovery give similar results and

are available upon request.

29Such a result is consistent with the hypothesis that E-mini futures liquidity and the degree of information

asymmetry are positively related, and inconsistent with the counterargument that market markers in the

E-mini futures market increase (decrease) their relative spreads during periods of concentrated informed

(uniformed) trading.

30These results are not highly dependent on the use of DCC-GARCH conditional volatility estimates.

Indeed, similar results are obtained when the (time-invariant) unconditional variances of the residuals in (1)

are used to construct the variance-covariance matrix of residuals.

31Taking the log of these measures delivers an aggregated measure that is robust to outlying price discovery

measures associated with individual constituent markets.

32The difference between the component and information share measures of price discovery is analogous to

the difference between a coefficient and a partial R2 in a standard regression framework (de Jong, 2002).
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Table I: Summary statistics

This table contains summary statistics pertaining to one-minute frequency returns, bilateral mispricings, and trading intensities
observed in five S&P 500 constituent markets; viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares
ETF share market, (4) the regular futures market, and (5) the E-mini futures market. Returns are defined as the log of the first
difference in prices, multiplied by 100; bilateral mispricing is defined as the demeaned difference between the index level and the
price of each of four other securities, multiplied by 100; and trading intensity is defined as the number of trades carried out per
minute. The significance of the mean, minimum, maximum, and standard deviation are assessed using a standard asymptotic
test obtained under the null hypothesis that each of the measures equal zero. Normality is tested using the Jarque-Bera test,
while skewness and (excess) kurtosis are tested under the (asymptotic) assumption that these moments have, respectively,
N(0, 6/T ) and N(0, 24/T ) distributions under the appropriate null hypotheses. Autocorrelation is measured as the first-order
autoregressive coefficient, with the associated t-test being used to assess its significance. The ARCH test statistic is given by
T × R2, where R2 is obtained from an OLS regression of squared returns on up to ten lagged values of these squared returns.
The significance of each moment or test is denoted by ∗∗∗ (1% significance), ∗∗ (5% significance), and ∗ (10% significance).

Constituent Market

(1) (2) (3) (4) (5)

Panel A: Returns

Mean −0.0002 −0.0002 −0.0002 −0.0002 −0.0002
Minimum −0.6385∗∗∗ −2.3430∗∗∗ −0.6367∗∗∗ −0.7418∗∗∗ −1.3534∗∗∗
Maximum 0.7346∗∗∗ 1.8635∗∗∗ 0.6164∗∗∗ 0.8554∗∗∗ 0.6365∗∗∗
Standard Deviation 0.0521∗∗∗ 0.0789∗∗∗ 0.0704∗∗∗ 0.0717∗∗∗ 0.0705∗∗∗
Skewness 0.0746∗∗∗ 0.0423∗∗∗ 0.0250∗∗∗ 0.0548∗∗∗ −0.0179∗∗
Kurtosis 7.3498∗∗∗ 43.2673∗∗∗ 6.1480∗∗∗ 7.0553∗∗∗ 7.8118∗∗∗
Normality > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Autocorrelation 0.3250∗∗∗ −0.0444∗∗∗ −0.0058∗ −0.0037 −0.0086∗∗∗
ARCH > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

Panel B: Bilateral Mispricings

Mean −0.0018 −0.0008 −0.0008 −0.0007
Minimum −1.9300∗∗∗ −1.9100∗∗∗ −1.7300∗∗∗ −1.7600∗∗∗
Maximum 1.8700∗∗∗ 1.3700∗∗∗ 1.4100∗∗∗ 1.5000∗∗∗
Standard Deviation 0.1219∗∗∗ 0.0598∗∗∗ 0.0663∗∗∗ 0.0611∗∗∗
Skewness −0.7507∗∗∗ −2.9436∗∗∗ −3.0109∗∗∗ −2.4373∗∗∗
Kurtosis 20.5112∗∗∗ 98.8296∗∗∗ 98.4476∗∗∗ 88.0485∗∗∗
Normality > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Autocorrelation 0.7484∗∗∗ 0.6710∗∗∗ 0.7281∗∗∗ 0.6505∗∗∗
ARCH > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

Panel C: Trading Intensities

Mean 6.9417∗∗∗ 145.8719∗∗∗
Minimum 0.0000 0.0000
Maximum 41.0000∗∗∗ 1200.0000∗∗∗
Standard Deviation 7.9253∗∗∗ 185.6195∗∗∗
Skewness 1.3220∗∗∗ 1.7592∗∗∗
Kurtosis 1.9567∗∗∗ 4.0036∗∗∗
Normality > 99.9999∗∗∗ > 99.9999∗∗∗
Autocorrelation 0.4684∗∗∗ 0.7308∗∗∗
ARCH > 99.9999∗∗∗ > 99.9999∗∗∗

43



Table II: Model estimates

This table contains the estimated parameters (and model performance measures) associated with the unscaled (Panel A) and
scaled (Panel B) versions of the equilibrium correction model given by equation (1), applied to five S&P 500 constituent markets;
viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares ETF share market, (4) the regular futures market,
and (5) the E-mini futures market. In Panel A, numbers in parentheses are the Newey-West standard errors associated with the
estimated parameters; while in Panel B, the estimated parameters are represented by their time-series means, with numbers in
parentheses the associated time-series Newey-West standard errors. Residual quality is assessed via residual skewness (SK) and
kurtosis (KT), the Ljung-Box (LB) test statistic for autocorrelation, and the LM test for ARCH errors. Model fit is measured
by the adjusted R2, and the Akaike and Schwarz Information Criteria (denoted AIC and SIC, respectively). Significance is
denoted in the usual way.

Constituent Market

Coefficient (1) (2) (3) (4) (5)

Panel A: Unscaled model

{Ψ̂0}i1 −0.0002 0.0001 −0.0000 −0.0001 −0.0001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

{Ψ̂1}i1 0.0900∗∗∗ −0.0182∗∗∗ −0.1893∗∗∗ −0.1731∗∗∗ 0.0163
(0.0081) (0.0068) (0.0116) (0.0116) (0.0184)

{Ψ̂1}i2 −0.0030 0.1341∗∗∗ 0.2654∗∗∗ 0.2524∗∗∗ 0.2366∗∗∗
(0.0027) (0.0113) (0.0107) (0.0115) (0.0112)

{Ψ̂1}i3 −0.0228∗∗∗ −0.0544∗∗∗ −0.0213∗∗∗ −0.0229∗∗∗ −0.0241∗∗∗
(0.0076) (0.0098) (0.0038) (0.0041) (0.0041)

{Ψ̂1}i4 0.0469∗∗∗ −0.0315∗∗∗ −0.0417∗∗∗ −0.0672∗∗∗ −0.0615∗∗∗
(0.0074) (0.0105) (0.0110) (0.0114) (0.0118)

{Ψ̂1}i5 0.1770∗∗∗ 0.0445∗∗∗ 0.1889∗∗∗ 0.1874∗∗∗ −0.0157
(0.0107) (0.0117) (0.0027) (0.0167) (0.0115)

{α̂}i1 0.0014 0.3281∗∗∗ −0.0259∗∗∗ −0.0308∗∗∗ −0.0288∗∗∗
(0.0020) (0.0067) (0.0182) (0.0029) (0.0029)

{α̂}i2 −0.0153 0.1039∗∗∗ 0.5972∗∗∗ −0.1134∗∗∗ −0.0991∗∗∗
(0.0111) (0.0125) (0.0182) (0.0091) (0.0178)

{α̂}i3 0.1025∗∗∗ −0.1440∗∗∗ −0.1327∗∗∗ 0.5103∗∗∗ −0.0597∗∗∗
(0.0103) (0.0125) (0.0155) (0.0084) (0.0165)

{α̂}i4 −0.2038∗∗∗ −0.1140∗∗∗ −0.3386∗∗∗ −0.3453∗∗∗ 0.2885∗∗∗
(0.0182) (0.0163) (0.0300) (0.0089) (0.0328)

SK 0.0501∗∗∗ 0.2807∗∗∗ 0.0389∗∗∗ 0.0415∗∗∗ 0.0324∗∗∗
KT 6.4580∗∗∗ 37.3709∗∗∗ 6.6730∗∗∗ 6.7468∗∗∗ 6.7141∗∗∗
LB 12.8042∗∗∗ 1.1730 4.4043∗∗ 1.8304 0.0250
ARCH > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

R
2

0.1901 0.2708 0.1434 0.1112 0.0248

System R
2

0.1502

AIC −3.2833 −2.5583 −2.6248 −2.5498 −2.4928

System AIC −17.9044

SIC −3.2823 −2.5573 −2.6238 −2.5489 −2.4918

System SIC −17.9000
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Table II: Model estimates (continued)

This table contains the estimated parameters (and model performance measures) associated with the unscaled (Panel A) and
scaled (Panel B) versions of the equilibrium correction model given by equation (1), applied to five S&P 500 constituent markets;
viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares ETF share market, (4) the regular futures market,
and (5) the E-mini futures market. In Panel A, numbers in parentheses are the Newey-West standard errors associated with the
estimated parameters; while in Panel B, the estimated parameters are represented by their time-series means, with numbers in
parentheses the associated time-series Newey-West standard errors. Residual quality is assessed via residual skewness (SK) and
kurtosis (KT), the Ljung-Box (LB) test statistic for autocorrelation, and the LM test for ARCH errors. Model fit is measured
by the adjusted R2, and the Akaike and Schwarz Information Criteria (denoted AIC and SIC, respectively). Significance is
denoted in the usual way.

Constituent Market

Coefficient (1) (2) (3) (4) (5)

Panel B: Scaled model

{Ψ̂0}i1 −0.0002 0.0003 0.0001 0.0000 0.0000
(0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

{Ψ̂1t}i1 0.0994∗∗∗ −0.0115∗∗∗ −0.1026∗∗∗ −0.0628∗∗∗ 0.0218∗∗∗
(0.0019) (0.0006) (0.0008) 0.0011) (0.0028)

{Ψ̂1t}i2 −0.0036∗∗∗ 0.0500∗∗∗ 0.2474∗∗∗ 0.2422∗∗∗ 0.2288∗∗∗
(0.0003) (0.0022) (0.0031) (0.0027) (0.0028)

{Ψ̂1t}i3 −0.0046∗∗ −0.0266∗∗∗ −0.0103∗∗∗ −0.0119∗∗∗ −0.0180∗∗∗
(0.0019) (0.0011) (0.0003) (0.0006) (0.0005)

{Ψ̂1t}i4 0.0553∗∗∗ −0.0025 0.0085∗∗∗ −0.0354∗∗∗ −0.0402∗∗∗
(0.0012) (0.0009) (0.0011) (0.0011) (0.0018)

{Ψ̂1t}i5 0.1351∗∗∗ 0.0301∗∗∗ 0.1022∗∗∗ 0.1069∗∗∗ 0.0141∗∗∗
(0.0018) (0.0009) (0.0018) (0.0017) (0.0007)

{α̂t}i1 0.0009∗∗∗ 0.3101∗∗∗ −0.0099∗∗∗ −0.0127∗∗∗ −0.0158∗∗∗
(0.0002) (0.0018) (0.0002) (0.0003) (0.0004)

{α̂t}i2 0.0201∗∗∗ −0.0546∗∗∗ 0.7814∗∗∗ −0.0445∗∗∗ −0.0529∗∗∗
(0.0017) (0.0017) (0.0076) (0.0024) (0.0024)

{α̂t}i3 0.0890∗∗∗ −0.0550∗∗∗ −0.0557∗∗∗ 0.7484∗∗∗ −0.0379∗∗∗
(0.0012) (0.0009) (0.0023) (0.0048) (0.0019)

{α̂t}i4 −0.2547∗∗∗ −0.1256∗∗∗ −0.4756∗∗∗ −0.4759∗∗∗ 0.3418∗∗∗
(0.0034) (0.0018) (0.0057) (0.0047) (0.0026)

SK 0.0656∗∗∗ 0.4403∗∗∗ 0.0554∗∗∗ 0.0761∗∗∗ 0.0314∗∗∗
KT 6.2148∗∗∗ 36.0296∗∗∗ 6.4142∗∗∗ 6.6072∗∗∗ 6.6122∗∗∗
LB 6.2122∗∗ 1.7093 1.5663 0.5099 0.0067
ARCH > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

R
2

0.2142 0.2891 0.1692 0.1419 0.0370

System R
2

0.1720

AIC −3.3115 −2.5823 −2.6543 −2.5838 −2.5034

System AIC −18.2246

SIC −3.2973 −2.5682 −2.6402 −2.5697 −2.4893

System SIC −18.1544
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Table III: Testing coefficient restrictions

This table contains the (robust) Wald test statistics associated with various coefficient restrictions imposed on the unscaled
and scaled versions of the equilibrium correction model given by equation (1), applied to five S&P 500 constituent markets;
viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares ETF share market, (4) the regular futures market,
and (5) the E-mini futures market. Panel A of the table contains Wald test statistics associated with restrictions regarding
the overall significance of various groups of coefficients, while Panel B contains Wald test statistics associated with restrictions
imposed upon various groups of coefficients within various scaling factor sets. The scaling factor sets are defined as follows: an
intraday periodic scaling factor set (S1), an interday periodic scaling factor set based on the time-to-maturity of the futures
contracts (S2), a scaling factor set based on a measure of liquidity (S3), and two scaling factor sets based on the time period
before and after the announcement of key macroeconomic data (S4a and S4b, respectively), with unions of these sets defined
(and denoted) such that S := S1 ∪ S2 ∪ S3 ∪ S4 and S4 := S4a ∪ S4b. Significance is denoted in the usual way.

Constituent Market

Variable Restriction Factor(s) (1) (2) (3) (4) (5)

Panel A: Unscaled model

All Unity > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Own lagged > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ 34.9260∗∗∗ 1.8498
Other Lagged > 99.9999∗∗∗ 61.6873∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Other Lagged plus Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

Panel B: Scaled model

All S (inc. unity) > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Own lagged > 99.9999∗∗∗ 63.6800∗∗∗ 14.9605 38.0400∗∗∗ 17.8297
Other Lagged > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Other Lagged plus Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

All S (ex. unity) > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Own lagged > 99.9999∗∗∗ 30.0009∗∗ 6.1395 25.1910∗∗ 17.1307
Other Lagged > 99.9999∗∗∗ 78.5429∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Other Lagged plus Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

All S1 (ex. unity) > 99.9999∗∗∗ 99.2854∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Own Lagged 47.9649∗∗∗ 6.6194∗ 0.9865 6.0994 1.2241
Other Lagged 22.3836∗∗ 13.9475 54.3221∗∗∗ 33.3101∗∗∗ 34.7689∗∗∗
Mispricing 38.8455∗∗∗ 55.9264∗∗∗ 82.6989∗∗∗ 84.3354∗∗∗ > 99.9999∗∗∗
Other Lagged plus Mispricing 57.5550∗∗∗ 64.9721∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗

All S2 (ex. unity) > 99.9999∗∗∗ 47.4034∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ 90.1758∗∗∗
Own Lagged 21.9916∗∗∗ 7.8567∗∗ 1.8136 1.2783 1.0117
Other Lagged 21.5526∗∗ 15.3107 58.3592∗∗∗ 40.4438∗∗∗ 44.6238∗∗∗
Mispricing 54.5560∗∗∗ 7.6534 15.9407 64.1538∗∗∗ 26.4574∗∗∗
Other Lagged plus Mispricing 78.2147∗∗∗ 27.2261 95.8773∗∗∗ > 99.9999∗∗∗ 67.4363∗∗∗

All S3 (ex. unity) > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Own Lagged 86.4056∗∗∗ 14.8912∗∗∗ 1.0192 8.5171∗∗ 1.8978
Other Lagged 92.6038∗∗∗ 25.8265∗∗ > 99.9999∗∗∗ 71.3226∗∗∗ > 99.9999∗∗∗
Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
Other Lagged plus Mispricing > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗ > 99.9999∗∗∗
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Table III: Testing coefficient restrictions (continued)

This table contains the (robust) Wald test statistics associated with various coefficient restrictions imposed on the unscaled
and scaled versions of the equilibrium correction model given by equation (1), applied to five S&P 500 constituent markets;
viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares ETF share market, (4) the regular futures market,
and (5) the E-mini futures market. Panel A of the table contains Wald test statistics associated with restrictions regarding
the overall significance of various groups of coefficients, while Panel B contains Wald test statistics associated with restrictions
imposed upon various groups of coefficients within various scaling factor sets. The scaling factor sets are defined as follows: an
intraday periodic scaling factor set (S1), an interday periodic scaling factor set based on the time-to-maturity of the futures
contracts (S2), a scaling factor set based on a measure of liquidity (S3), and two scaling factor sets based on the time period
before and after the announcement of key macroeconomic data (S4a and S4b, respectively), with unions of these sets defined
(and denoted) such that S := S1 ∪ S2 ∪ S3 ∪ S4 and S4 := S4a ∪ S4b. Significance is denoted in the usual way.

Constituent Market

Variable Restriction Factor(s) (1) (2) (3) (4) (5)

Panel B: Scaled model (continued)

All S4a (ex. unity) 31.6949 26.6906 33.0253 34.2065 35.0701
Own Lagged 5.1151 3.1250 1.0427 0.6679 4.9261
Other Lagged 13.6388 13.6040 10.5016 7.2182 9.5631
Mispricing 14.2009 14.2978 23.1663∗∗ 20.7860∗ 19.4763∗
Other Lagged plus Mispricing 25.4043 24.8564 31.5229 31.0738 29.9009

All S4b (ex. unity) 32.2093 19.7389 31.6679 34.2519 34.6724
Own Lagged 1.7545 0.6914 0.9972 0.6288 6.5830∗
Other Lagged 18.5827∗ 8.0193 18.6623∗ 17.4175 6.7915
Mispricing 10.6581 7.0062 16.9962 13.4591 18.6823∗
Other Lagged plus Mispricing 30.0571 18.9389 30.7439 30.5287 26.5234
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Table IV: Estimated price discovery

This table contains estimates of the following measures of relative price discovery: the non-augmented and augmented Harris et
al (2002) component share measures (f̂1 and f̂1t, respectively); the non-augmented and augmented Hasbrouck (1995) information

share measures (f̂2 and f̂2t, respectively); the non-augmented and augmented de Jong and Schotman (2005) information share

measures (f̂3 and f̂3t, respectively); and the non-augmented and augmented Yan and Zivot (2006a) standardized price discovery

measures (−sf̂4K and sf̂4K,t, respectively) – all of which are based on the unscaled version (Panel A) or scaled version (Panel
B) of the equilibrium correction model given by equation (1). In the case of the augmented measures of price discovery, the
entries correspond to the time-series averages of each measure over the sample period. All of these measures are calculated
for all five (M) S&P 500 constituent markets; viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares
ETF share market, (4) the regular futures market, and (5) the E-mini futures market. Inference is based on a 1,000 repetition
bootstrap procedure with significance denoted in the usual way.

Constituent Market

Discovery measure (1) (2) (3) (4) (5)

Panel A: Unscaled model

{f̂1}i − 1/M 0.2410∗∗∗ −0.1573 −0.1099 −0.2034 0.2297∗∗∗

{f̂2}i − 1/M 0.0645∗∗∗ −0.1904 0.0190∗∗∗ 0.0078∗∗∗ 0.0991∗∗∗

{f̂3}i − 1/M 0.1586∗∗∗ −0.1901 −0.1015 −0.2038 0.3368∗∗∗

−({sf̂4K}i − 1/M) 0.1049∗∗∗ 0.0057 −0.0253 −0.1085 0.0232∗∗∗

{f̂1}1 − {f̂1}i 0.0000 0.3983∗∗∗ 0.3509∗∗∗ 0.4444∗∗∗ 0.0113

{f̂1}2 − {f̂1}i 0.0000 −0.0474∗∗∗ 0.0461 −0.3870∗∗∗

{f̂1}3 − {f̂1}i 0.0000 0.0935∗∗∗ −0.3396∗∗∗

{f̂1}4 − {f̂1}i 0.0000 −0.4331∗∗∗

{f̂2}1 − {f̂2}i 0.0000 0.2549∗∗∗ 0.0455∗∗∗ 0.0567∗∗∗ −0.0346∗∗∗

{f̂2}2 − {f̂2}i 0.0000 −0.2094∗∗∗ −0.1982∗∗∗ −0.2895∗∗∗

{f̂2}3 − {f̂2}i 0.0000 0.0122∗∗∗ −0.0801∗∗∗

{f̂2}4 − {f̂2}i 0.0000 −0.0913∗∗∗

{f̂3}1 − {f̂3}i 0.0000 0.3487∗∗∗ 0.2601∗∗∗ 0.3624∗∗∗ −0.1782∗∗∗

{f̂3}2 − {f̂3}i 0.0000 −0.0886∗∗∗ 0.0137 −0.5269∗∗∗

{f̂3}3 − {f̂3}i 0.0000 0.1023∗∗∗ −0.4383∗∗∗

{f̂3}4 − {f̂3}i 0.0000 −0.5406∗∗∗

−({sf̂4K}1 − {sf̂4K}i) 0.0000 0.0992∗∗∗ 0.1302∗∗∗ 0.2134∗∗∗ 0.0817∗∗∗

−({sf̂4K}2 − {sf̂4K}i) 0.0000 0.0501∗∗∗ 0.1142∗∗∗ −0.0175∗∗

−({sf̂4K}3 − {sf̂4K}i) 0.0000 0.0832∗∗∗ 0.0485∗∗∗

−({sf̂4K}4 − {sf̂4K}i) 0.0000 −0.1317∗∗∗

Panel B: Scaled model

{f̂1t}i − 1/M 0.3706∗∗∗ −0.1772 −0.1386 −0.2375 0.1826∗∗∗

{f̂2t}i − 1/M 0.1137∗∗∗ −0.1930 −0.0050 −0.0066 0.0907∗∗∗

{f̂3t}i − 1/M 0.3268∗∗∗ −0.1943 −0.1725 −0.2472 0.2872∗∗∗

−({sf̂4K,t}i − 1/M) 0.1074∗∗∗ 0.0364∗∗∗ −0.0452 −0.0819 −0.0167

{f̂1t}1 − {f̂1t}i 0.0000 0.5478∗∗∗ 0.5092∗∗∗ 0.6080∗∗∗ 0.1880∗∗∗

{f̂1t}2 − {f̂1t}i 0.0000 −0.0386 0.0603∗∗∗ −0.3598∗∗∗

{f̂1t}3 − {f̂1t}i 0.0000 0.0989∗∗∗ −0.3212∗∗∗

{f̂1t}4 − {f̂1t}i 0.0000 −0.4201∗∗∗
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Table IV: Estimated price discovery (continued)

This table contains estimates of the following measures of relative price discovery: the non-augmented and augmented Harris et
al (2002) component share measures (f̂1 and f̂1t, respectively); the non-augmented and augmented Hasbrouck (1995) information

share measures (f̂2 and f̂2t, respectively); the non-augmented and augmented de Jong and Schotman (2005) information share

measures (f̂3 and f̂3t, respectively); and the non-augmented and augmented Yan and Zivot (2006a) standardized price discovery

measures (−sf̂4K and sf̂4K,t, respectively) – all of which are based on the unscaled version (Panel A) or scaled version (Panel B)
of the equilibrium correction model given by equation (1). In the case of the augmented measures of price discovery, the entries
correspond to the time-series averages of each measure over the sample period. All of these measures are calculated for all five
(M) S&P 500 constituent markets; viz., (1) the index market, (2) the SPDR ETF share market, (3) the iShares ETF share
market, (4) the regular futures market, and (5) the E-mini futures market. Inference is based on a 1,000 repetition bootstrap
procedure with significance denoted in the usual way.

Constituent Market

Discovery measure (1) (2) (3) (4) (5)

Panel B: Scaled model (continued)

{f̂2t}1 − {f̂2t}i 0.0000 0.3067∗∗∗ 0.1187∗∗∗ 0.1203∗∗∗ 0.0230∗∗∗

{f̂2t}2 − {f̂2t}i 0.0000 −0.1880∗∗∗ −0.1864∗∗∗ −0.2837∗∗∗

{f̂2t}3 − {f̂2t}i 0.0000 0.0016∗∗∗ −0.0957∗∗∗

{f̂2t}4 − {f̂2t}i 0.0000 −0.0973∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.5212∗∗∗ 0.4993∗∗∗ 0.5740∗∗∗ 0.0396∗∗∗

{f̂3t}2 − {f̂3t}i 0.0000 −0.0218∗∗∗ 0.0528∗∗∗ −0.4993∗∗∗

{f̂3t}3 − {f̂3t}i 0.0000 0.0747∗∗∗ −0.4598∗∗∗

{f̂3t}4 − {f̂3t}i 0.0000 −0.5344∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0710∗∗∗ 0.1525∗∗∗ 0.1893∗∗∗ 0.1241∗∗∗

−({sf̂4K,t}2 − {sf̂4K,t}i) 0.0000 0.0815∗∗∗ 0.1182∗∗∗ 0.0530∗∗∗

−({sf̂4K,t}3 − {sf̂4K,t}i) 0.0000 0.0367∗∗∗ −0.0285∗∗∗

−({sf̂4K,t}4 − {sf̂4K,t}i) 0.0000 −0.0652∗∗∗
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Table V: Estimated price discovery and the trading day

This table contains estimates of the following event-specific conditional mean measures of price discovery: the augmented
Harris et al (2002) component share measure (f̂1t); the augmented Hasbrouck (1995) information share measure (f̂2t); the

augmented de Jong and Schotman (2005) information share measure (f̂3t); the augmented Yan and Zivot (2006a) standardized

price discovery measure (−sf̂4K,t); and the augmented Yan and Zivot (2006a) aggregated price discovery measure (−a ln f̂4K,t)
– all of which are based on the scaled version of the equilibrium correction model given by equation (1). The pair of events
considered in this table are the market open and market close periods, where the market open period is defined as the first
fifteen minutes of trading after the start of trading in the major S&P 500 markets, and the market close period is defined
as the last fifteen minutes of trading prior to the end of trading in the major S&P 500 markets. Differences between the
market open and close conditional mean measures of price discovery over these events are denoted by ∆(f̂1t), ∆(f̂2t), ∆(f̂3t),

−∆(sf̂4K,t), and −∆(a ln f̂4K,t). All of these measures are calculated for all five (M) S&P 500 constituent markets; viz., (1)
the index market, (2) the SPDR ETF share market, (3) the iShares ETF share market, (4) the regular futures market, and
(5) the E-mini futures market. Inference is based on a 1,000 repetition bootstrap procedure with significance denoted in the
usual way.

Constituent Market

Discovery measure Event(s) (1) (2) (3) (4) (5)

{f̂1t}i − 1/M Open (O) −0.0887 −0.0094 −0.6603 −0.5937 1.3521∗∗∗

{f̂2t}i − 1/M 0.0524∗∗∗ −0.1741 0.0150∗∗∗ −0.0100 0.1167∗∗∗

{f̂3t}i − 1/M 0.1059∗∗∗ −0.1690 −0.0392 −0.2798 0.3821∗∗∗

−({sf̂4K,t}i − 1/M) 0.0089∗∗∗ 0.0435∗∗∗ −0.0038 −0.0605 0.0119∗∗∗

{f̂1t}1 − {f̂1t}i 0.0000 −0.0793 0.5716 0.5050∗∗∗ −1.4408

{f̂2t}1 − {f̂2t}i 0.0000 0.2265∗∗∗ 0.0374∗∗∗ 0.0625∗∗∗ −0.0643∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.2748∗∗∗ 0.1450∗∗∗ 0.3857∗∗∗ −0.2762∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 −0.0346∗∗∗ 0.0127∗∗∗ 0.0694∗∗∗ −0.0030

{f̂1t}i − 1/M Close (C) 0.6399∗∗∗ −0.2438 −0.3345 −0.1773 0.1157∗∗∗

{f̂2t}i − 1/M 0.1388∗∗∗ −0.1960 −0.0296 −0.0004 0.0872∗∗∗

{f̂3t}i − 1/M 0.4070∗∗∗ −0.2020 −0.3042 −0.1690 0.2681∗∗∗

−({sf̂4K,t}i − 1/M) 0.1123∗∗∗ 0.0380∗∗∗ −0.0631 −0.0524 −0.0348

{f̂1t}1 − {f̂1t}i 0.0000 0.8836∗∗∗ 0.9743∗∗∗ 0.8171∗∗∗ 0.5242∗∗∗

{f̂2t}1 − {f̂2t}i 0.0000 0.3348∗∗∗ 0.1684∗∗∗ 0.1392∗∗∗ 0.0516∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.6090∗∗∗ 0.7112∗∗∗ 0.5760∗∗∗ 0.1389∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0743∗∗∗ 0.1755∗∗∗ 0.1647∗∗∗ 0.1471∗∗∗

∆({f̂1t}i) O v. C −0.7285∗∗∗ 0.2344∗∗∗ −0.3259 −0.4164 1.2364

∆({f̂2t}i) −0.0864∗∗∗ 0.0220∗∗∗ 0.0446∗∗∗ −0.0096∗∗∗ 0.0295∗∗∗

∆({f̂3t}i) −0.3012∗∗∗ 0.0330∗∗∗ 0.2651∗∗∗ −0.1108∗∗∗ 0.1140∗∗∗

−∆({sf̂4K,t}i) −0.1034∗∗∗ 0.0055 0.0593∗∗∗ 0.0081∗∗ 0.0467∗∗∗

−∆(a ln f4K,t) 1.1497
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Table VI: Estimated price discovery and liquidity

This table contains estimates of the following event-specific conditional mean measures of price discovery: the augmented
Harris et al (2002) component share measure (f̂1t); the augmented Hasbrouck (1995) information share measure (f̂2t); the

augmented de Jong and Schotman (2005) information share measure (f̂3t); the augmented Yan and Zivot (2006a) standardized

price discovery measure (−sf̂4K,t); and the augmented Yan and Zivot (2006a) aggregated price discovery measure (−a ln f̂4K,t)
– all of which are based on the scaled version of the equilibrium correction model given by equation (1). The pair of events
considered in this table are low liquidity and high liquidity, where low (high) liquidity is defined as all liquidity amounts below
(above) the median level of liquidity in the E-mini futures market. Differences between the low and high liquidity conditional

mean measures of price discovery over these events are denoted by ∆(f̂1t), ∆(f̂2t), ∆(f̂3t), −∆(sf̂4K,t), and −∆(a ln f̂4K,t). All
of these measures are calculated for all five (M) S&P 500 constituent markets; viz., (1) the index market, (2) the SPDR ETF
share market, (3) the iShares ETF share market, (4) the regular futures market, and (5) the E-mini futures market. Inference
is based on a 1,000 repetition bootstrap procedure with significance denoted in the usual way.

Constituent Market

Discovery measure Event(s) (1) (2) (3) (4) (5)

{f̂1t}i − 1/M Low Liq. (L) 0.3504∗∗∗ −0.1739 −0.0837 −0.1940 0.1012∗∗∗

{f̂2t}i − 1/M 0.1248∗∗∗ −0.1930 −0.0001 −0.0044 0.0726∗∗∗

{f̂3t}i − 1/M 0.3561∗∗∗ −0.1945 −0.1530 −0.2084 0.1997∗∗∗

−({sf̂4K,t}i − 1/M) 0.1067∗∗∗ 0.0531∗∗∗ −0.0430 −0.0703 −0.0464

{f̂1t}1 − {f̂1t}i 0.0000 0.5243∗∗∗ 0.4342∗∗∗ 0.5444∗∗∗ 0.2493∗∗∗

{f̂2t}1 − {f̂2t}i 0.0000 0.3178∗∗∗ 0.1249∗∗∗ 0.1292∗∗∗ 0.0523∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.5506∗∗∗ 0.5092∗∗∗ 0.5645∗∗∗ 0.1564∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0536∗∗∗ 0.1497∗∗∗ 0.1769∗∗∗ 0.1531∗∗∗

{f̂1t}i − 1/M High Liq. (H) 0.3910∗∗∗ −0.1805 −0.1942 −0.2815 0.2652∗∗∗

{f̂2t}i − 1/M 0.1025∗∗∗ −0.1929 −0.0099 −0.0088 0.1091∗∗∗

{f̂3t}i − 1/M 0.2971∗∗∗ −0.1942 −0.1923 −0.2865 0.3759∗∗∗

−({sf̂4K,t}i − 1/M) 0.1081∗∗∗ 0.0194∗∗∗ −0.0473 −0.0937 0.0135∗∗∗

{f̂1t}1 − {f̂1t}i 0.0000 0.5715∗∗∗ 0.5851∗∗∗ 0.6725∗∗∗ 0.1258∗∗∗

{f̂2t}1 − {f̂2t}i 0.0000 0.2954∗∗∗ 0.1124∗∗∗ 0.1113∗∗∗ −0.0066∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.4913∗∗∗ 0.4894∗∗∗ 0.5836∗∗∗ −0.0788∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0887∗∗∗ 0.1554∗∗∗ 0.2018∗∗∗ 0.0946∗∗∗

∆({f̂1t}i) L v. H −0.0405 0.0066 0.1104 0.0875∗∗∗ −0.1640∗∗∗

∆({f̂2t}i) 0.0223∗∗∗ −0.0001 0.0099∗∗∗ 0.0044∗∗∗ −0.0366∗∗∗

∆({f̂3t}i) 0.0590∗∗∗ −0.0003 0.0393∗∗∗ 0.0782∗∗∗ −0.1762∗∗∗

−∆({sf̂4K,t}i) −0.0015 0.0336∗∗∗ 0.0043∗∗∗ 0.0234∗∗∗ −0.0599∗∗∗

−∆(a ln f4K,t) −3.0992∗∗∗
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Table VI: Estimated price discovery around macroeconomic announcements

This table contains estimates of the following event-specific conditional mean measures of price discovery: the augmented Harris
et al (2002) component share measure (f̂1t); the augmented Hasbrouck (1995) information share measure (f̂2t); the augmented de

Jong and Schotman (2005) information share measure (f̂3t); the augmented Yan and Zivot (2006a) standardized price discovery

measure (−sf̂4K,t); and the augmented Yan and Zivot (2006a) aggregated price discovery measure (−a ln f̂4K,t) – all of which
are based on the scaled version of the equilibrium correction model given by equation (1). The pair of events considered in this
table are the before and after macroeconomic announcement periods, where the before (after) announcement period is defined as
the fifteen minute period prior to (after) the announcement. Differences between the before and after announcement conditional

mean measures of price discovery over these events are denoted by ∆(f̂1t), ∆(f̂2t), ∆(f̂3t), −∆(sf̂4K,t), and −∆(a ln f̂4K,t). All
of these measures are calculated for all five (M) S&P 500 constituent markets; viz., (1) the index market, (2) the SPDR ETF
share market, (3) the iShares ETF share market, (4) the regular futures market, and (5) the E-mini futures market. Inference
is based on a 1,000 repetition bootstrap procedure with significance denoted in the usual way.

Constituent Market

Discovery measure Event(s) (1) (2) (3) (4) (5)

{f̂1t}i − 1/M Before Ann. (B) 0.2955∗ −0.1615 −0.2323 0.0949 0.0034

{f̂2t}i − 1/M 0.1220∗∗∗ −0.1920 −0.0140 0.0122 0.0718∗∗∗

{f̂3t}i − 1/M 0.3556∗∗∗ −0.1935 −0.1861 −0.1776 0.2017∗∗∗

−({sf̂4K,t}i − 1/M) 0.0936∗∗∗ 0.0616∗∗∗ −0.0579 −0.0873 −0.0100

{f̂1t}1 − {f̂1t}i 0.0000 0.4570∗∗∗ 0.5278∗∗∗ 0.2006 0.2921∗∗∗

{f̂2t}1 − {f̂2t}i 0.0000 0.3139∗∗∗ 0.1360∗∗∗ 0.1097∗∗∗ 0.0502∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.5491∗∗∗ 0.5417∗∗∗ 0.5332∗∗∗ 0.1539∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0319∗∗∗ 0.1514∗∗∗ 0.1808∗∗∗ 0.1035∗∗∗

{f̂1t}i − 1/M After Ann. (A) 0.2792∗∗∗ −0.2087 −0.1695 −0.1890 0.2881∗∗∗

{f̂2t}i − 1/M 0.0782∗∗∗ −0.1921 0.0020 0.0077∗∗∗ 0.1043∗∗∗

{f̂3t}i − 1/M 0.1938∗∗∗ −0.1957 −0.1546 −0.1833 0.3398∗∗∗

−({sf̂4K,t}i − 1/M) 0.0749∗∗∗ 0.0047∗∗∗ −0.0374 −0.0678 0.0256∗∗∗

{f̂1t}1 − {f̂1t}i 0.0000 0.4880∗∗∗ 0.4488∗∗∗ 0.4682∗∗∗ −0.0088

{f̂2t}1 − {f̂2t}i 0.0000 0.2704∗∗∗ 0.0763∗∗∗ 0.0706∗∗∗ −0.0260∗∗∗

{f̂3t}1 − {f̂3t}i 0.0000 0.3894∗∗∗ 0.3483∗∗∗ 0.3771∗∗∗ −0.1460∗∗∗

−({sf̂4K,t}1 − {sf̂4K,t}i) 0.0000 0.0702∗∗∗ 0.1122∗∗∗ 0.1427∗∗∗ 0.0493∗∗∗

∆({f̂1t}i) B v. A 0.0163 0.0473∗∗ −0.0628∗∗∗ 0.2839 −0.2847∗∗∗

∆({f̂2t}i) 0.0437∗∗∗ 0.0002 −0.0160∗∗∗ 0.0046∗∗∗ −0.0325∗∗∗

∆({f̂3t}i) 0.1618∗∗∗ 0.0022∗∗ −0.0316 0.0057 −0.1381∗∗∗

−∆({sf̂4K,t}i) 0.0187∗∗∗ 0.0570∗∗∗ −0.0205∗∗∗ −0.0195∗∗∗ −0.0356∗∗∗

−∆(a ln f4K,t) −1.2936
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Figure 2: Aggregate price discovery around macroeconomic announcements.
The figure contains the augmented Yan and Zivot (2006a) aggregated price discovery measure
(−a ln f̂4K,t) plotted against the pre-10.00 a.m. macroeconomic announcement scaling factor space.

56


