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Abstract

In this paper, we develop a framework to study the effect of liquidity on prices

of credit default swaps (CDS). We derive a theoretical asset-pricing model for

derivative contracts that allows for expected liquidity and liquidity risk. This

extends the LCAPM of Acharya and Pedersen (2005) to a setting with derivative

instruments. This model is tested by applying the standard two-pass regression

approach to CDS portfolios, for which we construct time series of excess returns

and liquidity costs using a repeated sales methodology. The first-step time series

regressions provide evidence for systematic credit and liquidity factors. In a second

step, we explain expected excess CDS returns which are estimated from CDS

spreads, corrected for the expected loss. We find that the exposure to credit

risk is priced and provide evidence of an economically and statistically significant

expected liquidity premium attributable to the protection seller. Liquidity risk

seems not to be priced. Our results thus suggest that CDS spreads cannot be used

as frictionless measures of default risk, as is often done in the recent literature.
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1 Introduction

The relation between liquidity and asset prices has received considerable attention re-

cently. However, much less is known about liquidity effects in derivative markets. This

paper studies the impact of liquidity on the prices of credit default swaps, both theoreti-

cally and empirically. Recent market developments suggest that the credit default swap

(CDS) market is subject to shocks in liquidity. In the sub-prime crisis of summer 2007,

not only credit spreads increased substantially, but liquidity also dropped dramatically.

This paper makes three contributions. Our first contribution is a theoretical asset

pricing model for derivatives that incorporates liquidity risk. This model extends the

‘Liquidity-CAPM’ of Acharya and Pedersen (2005), who only consider assets that are

in positive net supply, in which case illiquidity always leads to lower asset prices. For

derivative securities, which are in zero net supply, the effect of liquidity is much more

complicated and can be zero, positive or negative. We propose an equilibrium framework

where investors use derivatives to hedge a fixed (credit) risk exposure. Transaction

costs for derivatives vary systematically over time. We derive that under fairly mild

conditions, the expected return on the derivative asset can be decomposed into a market

risk premium, an expected liquidity component, and one liquidity risk premium. This

result differs from the result for a positive net supply market as in Acharya and Pedersen

(2005) where there are three liquidity risk premia. We show that sign of the liquidity

effect depends on heterogeneity in investors’ risk exposures and wealth. Our model

builds on existing work on hedging pressures in futures markets (de Roon, Nijman and

Veld, 2000) and option markets (Garleanu, Pedersen and Poteshman, 2006).

Our second contribution is an empirical test of this theoretical framework for an

important class of derivative assets, credit default swaps (CDS). By now, the market for

CDS contracts is one of the largest derivative markets (approximately 45.5 trillion USD

around June 2007 according to Baird (2007)). The CDS market has become much more

liquid than the corporate bond market. This has induced researchers and practitioners

to use CDS spreads as pure measures of default risk (for example, Longstaff, Mithal

and Neis (2005) and Blanco, Brennan and Marsh (2005)). However, using a standard

two-pass regression approach to estimate the asset pricing model, our empirical results

show that a considerable part of the CDS spread reflects a compensation for expected

liquidity. Sellers of credit protection thus receive an illiquidity compensation on top

of the compensation for default risk. There seems to be no effect of liquidity risk on
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expected CDS returns.

Third, we make several methodological contributions. We derive expressions for

realized and expected excess returns on CDS positions. In particular, we show how

to construct the expected excess returns from the CDS spread level, corrected for the

expected loss. As argued by Campello, Chen and Zhang (2008), this procedure gives

much more precise estimates of expected returns than averaged realized returns. On

the econometric side, we use a repeated sales methodology to construct portfolio CDS

returns and bid-ask spreads from the unbalanced panel of individual CDS quotes. Since

our data are rather sparse, and because the sample composition varies substantially from

one day to another, a repeated sales methodology makes much more efficient use of the

information in the data than simple averaging of quotes over daily or weekly intervals.

For the empirical analysis we use a representative dataset of CDS bid and ask quote

data for US firms and banks over a relatively long period (2000-2006). We only rely on

the most standard and most liquid 5-year contracts. By taking raw quote data we avoid

the use of pre-manipulated data. Applying the repeated sales method to these data,

we construct excess CDS returns and bid-ask spreads for rating, liquidity and industry

portfolios. The level and variation of the bid-ask spreads is used to measure liquidity

and liquidity risk.

We estimate the asset pricing model in two steps. In the first stage, realized CDS

excess returns and unexpected liquidity shocks are regressed on market risk factors.

In the second stage, expected excess returns are regressed on a measure of expected

liquidity and on the risk exposure coefficients obtained in the first step. As discussed

above, the expected excess returns are obtained from CDS spread levels, corrected for

expected loss.

The first-step time series regressions provide evidence for a systematic credit risk

factor in CDS returns. Moreover liquidity shocks also seem to exhibit a factor structure,

but to a systematic liquidity factor rather than to a systematic credit factor. In the

second stage, we find a positive and significant premium on expected liquidity, implying

that the exposures to this are priced for the protection seller. Specification tests on

the model reveal that the effect of liquidity on CDS prices feeds through the channel

of expected liquidity as our model predicts and that the detected systematic liquidity

factor does not play a role in CDS pricing. These results are robust to the apparent

trend break in CDS quotes that can be seen at the moment that the standardized ISDA

contract was introduced, errors-in-variable problems and restrictions on risk premia.

2



To our knowledge, two recent papers estimate the impact of liquidity on CDS

spreads, Tang and Yan (2006) and Chen, Cheng and Wu (2005). Our paper contributes

to this work by developing a theoretical framework for liquidity effects on derivative

prices and by explicitly estimating an asset pricing model for expected CDS returns.

The asset pricing model allows for an immediate interpretation of our results as liquid-

ity and liquidity risk premia. Tang and Yan (2006) regress CDS spreads on variables

that capture expected liquidity and liquidity risk, and find that illiquidity leads to higher

spreads. Chen et al. (2005) estimate the impact of liquidity and other factors on CDS

spreads using a term structure approach. For estimation, they use term structures of

CDS spreads over a sample period of slightly less than one year, much shorter than our

sample period. They find that premia for liquidity risk and expected liquidity premium

are earned by the CDS buyer. The identification of the liquidity risk premium comes

from the term structure of CDS spreads, whereas our method follows the standard pro-

cedure of identifying risk premia from expected excess returns. Another recent paper by

Das and Hanouna (2007) develops a framework in which lower equity market liquidity

leads to higher CDS prices and confirms this mechanism empirically.

More generally, our paper builds on the literature on asset pricing and liquidity.1

When we shift our attention to derivative markets, we see that literature on liquidity is

very scarce and often starts from a somewhat different viewpoint, see for example Çetin,

Jarrow, Protter and Warachka (2006) who add liquidity to the standard Black-Scholes

framework and Brenner and Eldor (2001) who investigate the effect of non-tradability

on currency derivatives. Deuskar, Gupta and Subrahmanyam (2006) find empirically

that illiquid interest rate options trade at higher prices than liquid options, and also

find evidence for commonality in liquidity of different options.

The remainder of this paper is structured as follows. In section 2 we introduce our

theoretical model. In section 3 we discuss the definition and construction of our model

variables in detail. A brief description of the data and the filters applied to these data is

presented in Section 4. The methodology of our empirical analysis is presented in Section

5, followed by the results and robustness checks in Section 6. Section 7 concludes.

1For the equity market, the pricing of liquidity risk has been studied by Amihud (2002), Acharya and

Pedersen (2005), Pastor and Stambaugh (2003), and Korajczyk and Sadka (2007), amongst others. De

Jong and Driessen (2005), Downing, Underwood and Xing (2005) and Nashikkar and Subrahmanyam

(2006) study the pricing of liquidity in corporate bond markets.
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2 Pricing of liquidity risk in derivatives

Our starting point is the liquidity CAPM of Acharya and Pedersen (2005), henceforth

AP. Let there be K risky assets, and let r be the vector of excess returns and c the

vector of transaction costs on these assets. The asset pricing of AP equation is

E(r) = E(c) + λCov(r − c, rm − cm) (1)

AP write their result also as

E(r) = πE(c) + λ1Cov(r, rm)− λ2Cov(r, cm)− λ3Cov(c, rm) + λ4Cov(c, cm) (2)

The AP model is derived in a setting where all assets are in positive net supply and (in

equilibrium) all investors hold long positions in the assets. In this section, we extend

the AP model to a setting where agents use the assets to hedge background risk, as in

the models of de Roon et al. (2000) and Garleanu et al. (2006). We have two versions

of this model, one for a positive net supply market and one for assets that are in zero

net supply. The latter model is appropriate for a derivatives market such as the CDS

market.

2.1 Positive net supply

We first derive an extension of the AP model with initial non-traded exposures to a risk

factor R. Following de Roon et al. (2000), we assume that investor i maximizes the

mean-variance utility function

Ui = x′iE(r − c)− 1

2
AiVar(x′i(r − c) + qiR) (3)

where xi is the vector of portfolio weights, r the vector of returns, and c the vector of

transaction costs (incurred when liquidating the position) for the K assets.2 The scalar

R denotes the return on the risk factor and qi the investor’s exogenous exposure to the

risk factor. Finally, Ai is the coefficient of absolute risk aversion. Maximizing the utility

function with respect to xi, the solution for optimal portfolio weight is

xi = A−1
i V −1

r−c [E(r)− E(c)− AiCov(r − c, R)qi] (4)

2Like in Acharya and Pedersen (2005), we assume for this example that all portfolio weights are

positive. If there is a single representative investor, this is obviously the case in equilibrium.
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with Vr−c = Var(r − c). Then, summing over all investors with wealth weights wi, the

aggregate first order condition is

∑
i

wixi = V −1
r−c

[∑
i

wiA
−1
i (E(r)− E(c))− Cov(r − c, R)

∑
i

wiqi

]
(5)

Solving this for E(r) gives

E(r) = E(c) +
x̄

θ1

Vr−c +
θ2

θ1

Cov(r − c, R) (6)

with x̄ =
∑

i wixi, θ1 =
∑

i wiA
−1
i , and θ2 =

∑
i wiqi. Defining the net market return

rm − cm = (r − c)′x̄, this can be written as

E(r) = E(c) +
1

θ1

Cov(r − c, rm − cm) +
θ2

θ1

Cov(r − c, R) (7)

This is a straightforward extension of the AP pricing equation (1). Their model is a

special case with qi = 0 for all i and hence θ2 = 0.

2.2 Zero net supply

We now extend this model to a zero-net supply case. Transaction costs here represent

both the bid-ask spread and search costs, which are relevant in over-the-counter markets

(see Duffie, Gârleanu and Pedersen (2005)). We assume that there are (implicit) market

makers who only play a role as intermediary, that is they earn the bid-ask spread and

hold net zero positions in CDS contracts. In reality, investment banks often act as

market makers.

In equilibrium some investors hold long positions (δi = 1) and other investors hold

short positions (δi = −1) in the assets. For each investor, it is assumed that the ’sign’ of

the position (long or short) is the same for all assets. This is somewhat restrictive, but

in the setting of the CDS market not unrealistic: an investor is either a seller of CDS

contracts or a buyer. For example, long-term investors like hedge funds and pension

funds will typically take on credit risk while commercial banks will try to hedge their

credit exposure with CDS contracts.

Investor i maximizes the mean-variance utility function

Ui = x′iE(r − δic)− 1

2
AiVar(x′i(r − δic) + qiR) (8)

Writing out the variance and omitting terms that don’t involve xi gives

Ui = x′i(E(r)− δiE(c))− 1

2
Ai [x

′
i (Vr − δi(C + C ′) + Vc) xi + 2x′iCov(r − δic, R)qi] (9)
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with Vr = Var(r), Vc = Var(c) and C = Cov(c, r). Taking derivatives with respect to xi

gives the first order condition for investor i

E(r)− δiE(c)− Ai (Vr − δi(C + C ′) + Vc) xi − AiCov(r − δic, R)qi = 0K (10)

where 0K is a K-dimensional zero vector, with solution for the optimal portfolio weights

xi = A−1
i (Vr − δi(C + C ′) + Vc)

−1
[E(r)− δiE(c)− AiCov(r − δic, R)qi] (11)

This asset demand function is nonlinear in δi and can therefore not be aggregated in an

easy way over all individuals. However, if the transaction costs are small relative to the

returns, we can do a Taylor expansion to linearize the asset demand (see Appendix A).

This gives

xi = A−1
i

(
V −1

r + δiW
)
[E(r)− δiE(c)− AiCov(r − δic, R)qi] (12)

with W = V −1
r (C + C ′)V −1

r . Pre-multiplying by the wealth-weights wi and imposing

the zero-net supply condition
∑

i wixi = 0K gives the equilibrium pricing condition:

0K =
∑

i

wiA
−1
i

(
V −1

r + δiW
)
[E(r)− δiE(c)− AiCov(r − δic, R)qi] (13)

Solving this equation for E(r) gives the equilibrium expected returns

E(r) =
(
θ1V

−1
r + θ3W

)−1 [(
θ3V

−1
r + θ1W

)
E(c)

+
(
θ2V

−1
r + θ4W

)
Cov(r, R)− (

θ4V
−1
r + θ2W

)
Cov(c, R)

]
(14)

with θ1 =
∑

wiA
−1
i , θ2 =

∑
wiqi, θ3 =

∑
wiA

−1
i δi and θ4 =

∑
wiqiδi. The four

parameters in this system of equations can be estimated using the Generalized Method

of Moments (replacing the first and second moments by sample equivalents). For our

purpose, we consider two special cases that lead to a linear asset pricing equation that

can be estimated more easily.

The first case assumes that C = Cov(c, r) is equal to zero so that W = 0. For our

empirical application to CDS contracts we cannot reject that these covariances differ

significantly from zero. In this case, equation (14) can be rewritten into the following

linear asset pricing equation

E(r) =
θ3

θ1

E(c) +
θ2

θ1

Cov(r, R)− θ4

θ1

Cov(c, R) (15)

where θi/θ1, i = 2, 3, 4, are scalars. In this case, expected returns are determined by

an expected liquidity component a market risk premium component (if we take R to
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be a market index), and a premium for the covariance between costs and the market

return. Given that θ1 > 0, the sign of the expected liquidity effect depends on the sign

of θ3 =
∑

wiA
−1
i δi. For example, this effect is positive if the long positions are held by

investors with small risk aversion and/or high wealth, in which case the ’long’ holders

pocket the liquidity premium. The model in (15) turns out to be the empirically most

relevant model in our empirical analysis.

The second case allows for some degree of covariation between returns and transac-

tion costs. Specifically, we assume in this case that CV −1
r = Cov(c, r)Var(r)−1 = 1

2
ρI,

where ρ is a scalar. The matrix Cov(c, r)Var(r)−1 is the matrix of slope coefficients in a

regression of c on r: c = a+Br+e. The assumption made is that this matrix is diagonal

and that all diagonal elements are the same, i.e. B = ρI. As B has the interpretation as

hedge coefficients, this assumption implies that for each asset, the own returns are the

best hedge of transaction costs, and moreover the hedge ratio is the same for all assets.

With this assumption, we get W = ρV −1
r and equation (14) simplifies to

E(r) =
θ3 + θ1ρ

θ1 + θ3ρ
E(c) +

θ2 + θ4ρ

θ1 + θ3ρ
Cov(r, R)− θ4 + θ2ρ

θ1 + θ3ρ
Cov(c, R) (16)

The coefficient on the transaction costs depends on the wealth and risk aversion weighted

sign of the asset holdings (δi). If the more wealthy or less risk averse investors have long

positions in the assets, the coefficient on the transaction costs is positive and the ’long’

holders earn a liquidity premium. Notice that in the CDS market, the way that we

define the CDS return means that a long position in the (credit) risk factor implies

providing (selling) credit protection. Equation (16) also shows that, even if the ’first

order effect’ on expected liquidity, θ3, is equal to zero, the expected liquidity effect can

still be nonzero if ρ differs from zero. For example, if ρ > 0 and θ3 = 0, the ’long’ holders

earn an expected liquidity compensation equal to ρE(c).

Comparing the risk premiums in equations (15) and (16) to the pricing equation of

the positive net supply model of AP in equation (2), we see that the risk factor R takes

the role of the market return. The coefficient of the covariance of the transaction costs

with the risk factor again can take any sign, depending on the balance of long and short

positions and initial exposures to the risk factor. In contrast to the AP model, there is

only one liquidity risk factor, rather than three as in equation (2). However, in some of

our empirical models, we estimate the betas as they appear in AP and add them in as

a robustness test.
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3 Empirical model

In the empirical model, we define the background risk R as a general credit index,

constructed as the return on a broad portfolio of CDS contracts. The excess returns rk

are returns on portfolios of similar (in terms of credit rating, industry or liquidity) CDS

contacts. The liquidity variable ck is the relative bid-ask spread on these portfolios.

3.1 Two step estimation

As is often done with linear asset pricing models, we recast our theoretical asset pricing

model into a form that allows for standard two step estimation. For our first step, we

specify the sensitivity equations

rk,t =αr,k + βrR,kRt + εk,t (17)

ck,t − Et−1(ck,t) =αc,k + βcR,kRt + υk,t (18)

where ck,t − Et−1(ck,t) are the unexpected changes in transaction costs. In addition, we

specify an unconditional asset pricing model

E(rk,t) = ζE(ck,t) + λrRβrR,k + λcRβcR,k + ek (19)

The coefficient ζ captures the impact of expected liquidity, while the coefficient λcR

reflects the liquidity risk premium. The coefficient λrR captures the risk premium on

systematic credit risk in the CDS market.

We did however notice that the liquidity costs exhibit a factor structure with the

market average bid-ask spread as driving factor. As a specification test, we therefore

also estimate a version of the model that is in line with the positive net supply model

of Acharya and Pedersen (2005). That is, we estimate the sensitivity equations

rk,t =αr,k + βrC,k (Ct − Et−1(Ct)) + βrR,kRt + εk,t (20)

ck,t − Et−1(ck,t) =αc,k + βcC,k (Ct − Et−1(Ct)) + βcR,kRt + υk,t (21)

and the asset pricing equation

E(rk,t) = ζE(ck,t) + λrRβrR,k + λrCβrR,k + λcRβcR,k + λcCβcC,k + ek (22)

where C are the market-wide transaction costs (the average costs across all assets). We

estimate the model with a two stage regression analogous to Black, Jensen and Scholes
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(1972). In the first stage we estimate the betas of the excess return equation (17) and the

liquidity equation (18) and in the second stage we regress the expected excess returns on

the betas from the first stage. The point estimates are obtained by simple OLS, but the

standard errors of the second stage estimates are harder to obtain. Typically, the left

hand side of the second stage equation is the sample average of all excess returns and

the covariance matrix of the second stage error terms is given by a linear combination

of first stage error and factor covariances. However, as discussed in detail below, we

construct estimates of the expected CDS returns by correcting CDS spread levels for

the expected loss, instead of using the average of the realized returns (used in the first

step regression). Therefore, rather than using error and factor covariance matrices,

we calculated the second stage error covariance matrix as the expected excess return

covariance matrix corrected for autocorrelation and heteroscedasticity using the method

presented in Newey and West (1987) with lag order 20. Moreover, we correct our second

stage standard errors for the errors in variables problem by modifying the procedure of

Shanken (1992) to incorporate the use of expected returns implied by CDS spreads, as

described in the appendix.

3.2 CDS returns

In this section, we describe how the CDS returns used in our model are constructed. To

estimate the factor and liquidity exposures (betas), we construct time series of excess

returns of CDS contracts at a portfolio level. To estimate risk premia, we use the fact

that the CDS spread level, corrected for the expected loss, gives a direct estimate of the

expected return. This gives a much more accurate estimates of E(Re,CDS
i ) than sample

averages of realized excess returns. This is especially relevant as we have a short sample

period of six years.

We first transform CDS spreads to excess returns. To derive the excess holding

returns, consider an investor at time t − 1 who sells protection using a CDS contract

on one of the n underlyings in the market, say k, at a spread CDSk,t paid in quarterly

periods. Next, at time t the investor buys an offsetting contract and pockets −1
4
∆CDSk,t

each period until default or maturity. The value of this stream at time t is the value of a

portfolio of defaultable zero coupon bonds each with a face value of −1
4
∆CDSi,t, which
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gives the holding return3

Re,CDS
k,t = −1

4
∆CDSk,t

4(T−t)∑
j=1

B(t, t + j)QSV
k,t (t + j), (23)

where QSV
k,t (t + j) is the risk-neutral survival probability up to time t + j and B(t, t + j)

is the price of a risk free zero coupon bond maturing at time t+j. Since we initiated the

contract at zero cost, our excess return is equal to the value of this stream. Of course,

when default occurs between t−1 and t, the excess return on the CDS is equal to minus

one times the loss given default (LGD). However, if we assume that the individual

jumps are not priced, we can ignore these cases for estimating portfolio betas.4 The

excess returns defined in equation (23) are the realized excess returns. However, in our

sample the time to maturity of the CDS contracts is not fully constant. Therefore, we

scale the excess returns such that they are defined on a maturity of exactly five years,

assuming that the term structure of default and risk free rates around the five year point

is flat.

To calculate the expected excess return at time t, we calculate the expectation under

the real world measure of all cash flows resulting from the CDS contract when held till

maturity, discounted at the risk free rate:

Et(total CDS pay-offk) =
1

4
CDSk,t

4(T−t)∑
j=1

B(t, t + j)PSV
k,t (t + j)−

(1− ρ)

4(T−t)∑
j=1

B(t, t + j)PSV
k,t (t + j − 1)Pdef |SV

k,t (t + j), (24)

where ρ is the expected recovery rate, PSV
k,t (t+j) is the real world survival probability up

to time t + j and Pdef |SV
k,t (t + j) is the probability of a default in period t + j conditional

on survival up to time t + j − 1. Notice that this formula gives the excess returns over

the five-year holding period of the CDS contract.

We then obtain an estimate of the unconditional expected excess return by averaging

these expected excess returns to maturity over time. These unconditional expected re-

turns are used as the left-hand-side variable in the second step of the two-pass regression

3This method is very close to the one used by Duffie, Longstaff, Pan and Singleton (2007). The

only difference is that they discount each cash flow with rf + CDS, whereas we discount with rf and

multiply with the risk neutral survival probability of each cash flow
4Note that we do not use these excess returns to construct expected excess returns, where which we

do correct for possible defaults (as shown in equation 24).
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method. Constructing expected excess returns in this way rather than averaging realized

excess returns allows us to achieve much more accurate estimates and thus achieve much

lower standard errors for risk premia. Since we use the expected return to maturity for

this calculation, the underlying assumption we make here is that the term structure of

expected CDS returns is flat.

To construct excess returns from our CDS spread changes, we need risk-free discount

rates. Lando and Feldhütter (2005) argue that despite the AA default risk premium

present in LIBOR rates, the best estimates of risk-free rates are obtained from swap

rates. Therefore, we use daily data on the 3-month LIBOR based swap curve with a

maturity of 1 up to 6 years. Swap rates are obtained from Datastream. To construct zero-

coupon rates, we assume that these are piece-wise constant per year and subsequently

bootstrap these rates from the observed term structure of swap rates.

To obtain the risk-neutral default probabilities, needed to construct excess returns,

we assume for simplicity that CDS prices only reflect default risk, that the risk-neutral

default intensity is constant over the maturity period and that there is a deterministic

recovery rate ρ = 40%. We then solve the CDS pricing equation under these assumptions

to obtain the default intensity and compute the risk-neutral probabilities (Duffie and

Singleton (2003)):

St = 4
(1− ρ)

∑4(T−t)
j=1 Qdef |SV (t + j)B(t, t + j)

∑4(T−t)
j=1 QSV (t + j)B(t, t + j)

, (25)

QSV (t + j) = exp(−λ(t + j)), (26)

where Qdef |SV (t+j) is the risk neutral probability of a default in period t+j conditional

on survival up to time t + j − 1. We calculate these probabilities at each day and for

each CDS portfolio used in the empirical analysis. 5

Real world default probability estimates, needed to construct expected excess re-

turns, are obtained from S&P annual default studies from 2001 up to 2005. These reports

specify average cumulative default frequencies per rating category starting from 1983 up

to the reporting year, ordered by notched rating class and tenor (in whole years). For

non-rated companies we used the average of all rated companies, also reported by S&P

5Naturally, there is an inconsistency in assuming that CDS prices are only driven by default risk

where the goal is to identify a non-default component. However, the relative sensitivity of QSV with

respect to λ is very small since λ is small and QSV close to one. If we iterate our estimation procedure,

by correcting the CDS spread and λ for the estimated liquidity effect and re-estimating the model, we

find results that are extremely close to the results reported here.
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in these reports. For a given year, we used the average cumulative default probabilities

calculated up to the year before. For quarterly periods, we use linear interpolation.

Our empirical analysis is performed using portfolios of CDS contracts. We thus

require default probabilities (PDs) at the portfolio level. The aggregation of PDs to the

rating sorted portfolios is trivial. For the industry and liquidity sorted portfolios, we

take weighted averages of all rating implied PDs, where the weight of every issuer is the

number of daily quotes for this issuer relative to the total number of daily quotes in its

portfolio.

4 Data

We use a database of CDS quotes compiled by CreditTrade. They keep track of all CDSs

quoted and traded on their trading platform. Our sample starts in July 2000 and runs

until end of June 2006. It contains bid and ask quotes of CDS spreads on US corporates

and banks. The sample period contains many important events like the Ford and GM

downgrade, the WorldCom collapse and the 9/11 terrorist attacks. We explicitly asked

for the terms of use of the trading platform and the typical end-users. The platform

offers only access to large financial institutions. Moreover, one cannot withdraw a quote

once it is hit and the issuer is obliged to trade at his quote. Therefore, we consider the

issuance of off-market quotes unlikely since they will be either useless or dangerous for

the quote issuer.

4.1 Detailed data description

The data include fields that indicate the date, name of underlying, the seniority of the

underlying, the maturity or maturity date, the currency, the amount underlying, either

the bid or the ask price (occasionally both), the ICB level 2 industry of the underlying,

whether it is a bank or corporate, the country the underlying is in, whether the record is

a trade or a quote, the Moody’s and/or S&P rating and the restructuring clause. Since

Credit Trade provide incomplete rating data, we match our data to S&P ratings from

Compustat NA Quarterly. These ratings are then used in our analysis.

When we look at the different characteristics in our sample, we can identify the

typical characteristics of a US contract. The typical contract is a five year maturity
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(90%) contract on a senior (98.5%) unsecured loan in USD (99.9%) with a Modified

Restructuring (MR) (96.7%) restructuring clause.

Something that is striking is the distribution of quotes over the years (Graph 1).

Since the peak in 2003 this number seems to go down every year, whereas the recent

literature reports an increase in liquidity and volume of the CDS market. Graph 1

also shows a split with respect to the months of every year, to show that this is not

an artefact of excessive trading during one month. This graph also shows us that in

general, we see a decline in activity in December. Moreover, we see a very sharp decline

in activity around the Ford/GM downgrade in May 2005. The decreasing number of

quotes can be due to several factors. It can be that Credit Trade is losing market share

and simply gets less inflow. Another cause can be that the market has grown to a better

understanding and that unrealistic quotes are not posted anymore. Finally, a better

transparency might have led to a shorter track of price discovery.

We can also look at the distribution across industries and rating categories (Graph

2; here we aggregated industries to ICB level 1 consistent with our portfolio formation

basis later on). We see that in general, telecom and healthcare companies have many

CDSs written on their debt as well as the two much broader categories of consumer

goods and consumer services. With respect to credit rating we see a strong preference

for the lower categories of investment grade debt.

4.2 Filters

By comparing different quotes of identical underlyings within the same week, we identi-

fied data problems (mainly typos or voice misinterpretations) and either corrected them

where possible or removed them when not. Restricting our sample to senior contracts

with a time to maturity of approximately (+/- 6 months) 5 years in USD with US

standard MR restructuring clause leaves us with 339904 intra day quotes. This will be

the base sample for our data construction. We then go from intra-day quotes to daily

quotes, to avoid intra-day market microstructure issues. Within every day, we take the

average bid and the average ask for every CDS that we observe that day. After doing

this, we end up with roughly 100,000 daily average bid and offer quotes on 918 entities.

13



4.3 Preliminary Data Analysis

To get an idea about patterns in the CDS market and the characteristics of different

variables, we present graphs of our data averaged over all companies available every week.

Note that these data represent an unbalanced panel and therefore will by construction

be noisy.

Figure 3 shows a time series plot of the average bid and average offer in our sample.

We see that the average CDS spread rises throughout the burst of the ICT bubble to

peak mid 2002. Hereafter, we see a sharp decline in average spreads, which coincides

with the introduction of the standardized ISDA contract.

In Figure 4 we see the weekly median bid-offer spread averaged over all issuers in

our sample. The average bid-offer spread is relatively high and very volatile during the

first period of the sample and then drops together with the average CDS spreads in the

second half of 2002 to a much lower and stable level. In the latter part of the sample

we then see one peak at the Ford/GM downgrade in May 2005. What is interesting is

that although the bid-offer spread widens immensely at the Ford/GM downgrade, the

spread of the CDS market as a whole did not increase dramatically.

5 Portfolios

As is usual in the asset pricing literature, we test the model specified above on different

test portfolios rather than on individual assets. This approach helps us to reduce the

effect of the outliers due to idiosyncratic shocks. However, portfolio construction in

this setting leads to problems. Contrary to equity markets in which reliable prices are

available even on intra-day basis for almost the whole spectrum of stocks, not every CDS

has a price quote in every week. As a result, we have to deal with missing observations.

Therefore, we adopt a technique called weighted repeated sales that originates from the

real estate literature and extend it to incorporate liquidity effects. A short description

is given below. For a more thorough coverage of this method, refer to Bailey, Muth and

Nourse (1963) and Case and Shiller (1987).
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5.1 The Repeated Sales Method

The repeated sales method originates from the real estate literature and generates a

house price index from data on individual house sales. The method employs regression

analysis to estimate the value of the index at different points in time as regression

coefficients.

Formally the model is set up as follows. Let k(i) be the portfolio that contains

constituent i and let T the number of periods. For constituent i, we assume that the

spread quote of a five years CDS contract pi,t is given by

pi,t = CDSk(i),t + ck(i),tδi,t + ui,t, (27)

where CDSk(i),t is the portfolio (or index) spread level (which is to be estimated), ck(i),t

is half the portfolio bid-ask spread, δ is a dummy that indicates whether pi,t is a bid

(-1) or ask (+1) quote and ui,t is a quote specific error term.6 ui,t has mean zero and

constant variance of σu and is uncorrelated with the other variables and its own lags.

To illustrate the approach, suppose we have three transactions in constituent i, say at

times s, s′ and s′′ and s < s′ < s′′. We can then specify spread innovations

∆pi,ss′ = pi,s′ − pi,s =
T∑

j=2

xi,j,ss′∆CDSk(i),j + (δi,s′ck(i),s′ − δi,sck(i),s) + (ui,s′ − ui,s)

∆pi,s′s′′ = pi,s′′ − pi,s′ =
T∑

j=2

xi,j,s′s′′∆CDSk(i),j + (δi,s′′ck(i),s′′ − δi,s′ck(i),s′) + (ui,s′′ − ui,s′)

where xi,j,ss′ is a dummy that defines whether j ∈ [s, s′]. The error covariance matrix is

given by

var(∆pi,ss′) = 2σ2
u (28)

var(∆pi,s′s′′) = 2σ2
u (29)

cov(∆pi,ss′ , ∆pi,s′s′′) = −σ2
u. (30)

We can write our spread innovation equations for all constituents of k(i) up to time T

in matrix form as

∆p = x∆CDSk(i) + (∆δ)ck(i) + v (31)

where v = ∆u. The best linear unbiased estimators of ∆CDSk(i) and ck(i) are given by
(

∆̂CDSk(i)

ĉk(i)

)
= (y′M−1y)−1y′M−1r, (32)

6Notice that we here implicitly assume that the mid-price is equal to the true price.
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where y = [x′∆δ′]′, M is the (sparse, block diagonal) covariance matrix of v.

Empirically, σu is unknown. However, because M is known up to a scalar which

drops out, it turns out to be possible to consistently estimate ∆CDSk(i) and ck(i) without

knowledge of σu by estimating ∆CDSk(i) and ck(i) using regression.7 In the appendix we

discuss in detail how we deal with missing observations and how we aggregate to weekly

data. The final outcome of this procedure is weekly series of CDS spread changes and

bid-ask spread levels at the portfolio level.

In order to estimate the risk neutral default and survival probabilities and expected

excess returns, we need portfolio CDS spread levels rather than innovations. We can

estimate the CDS spread level at any time up to a constant by simply summing the

innovations. We have

mk(i),t = CDSk(i),0 + Ik(i),t + εk(i),t, (33)

mk(i),t =
1

nk(i),t

∑

j∈k(i)

pj,t, (34)

Ik(i),t =
t∑

j=1

∆CDSk(i),j, (35)

CDSk(i),t = CDSk(i),0 + Ik(i),t, (36)

where mk(i),t and nk(i),t are the average and the number of all CDS quotes in portfolio

k(i) on day t respectively, Ik(i),t the accumulated spread change and CDSk(i),0 the level

of the portfolio spread at the start of our sample. We estimate CDSk(i),0 by regressing

mk(i) − Ik(i) on a constant. We redo this for every calendar year, because our sample is

not fully homogeneous over time. Once we have done this, we construct excess returns

and expected excess returns from the portfolio returns and levels that are obtained by

repeated sales as described in section 4.

5.2 Portfolio Descriptions

First of all, we estimate the market-wide bid-ask spread and market-wide CDS spread

changes. Additionally, we estimate the same quantities for ten industry portfolios, nine

rating portfolios and seven liquidity portfolios.

For the industry portfolios, we use the ICB level one classification. The portfolios

obtained this way vary substantially in the number of quotes per portfolio. The estimated

7we can do this because M is known up to a scalar which drops out
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portfolio return and bid-ask spread series for the sparse industries are rather noisy,

whereas those for the dense industries are much more precise.

For the rating portfolios, we use notched S&P ratings. We pool the high quality

(AAA to AA) and speculative grade (BB+ and lower) to have enough observations in

every portfolio. Additionally, we construct a non-rated class since we were unable to find

S&P ratings for all issuers. The non-rated returns however turn out to be rather noisy

compared to the other portfolios, indicating a lack of homogeneity in this portfolio.

The liquidity based portfolios are constructed as follows. We allow the composition

of the portfolios to change by calendar year. Each calender year we sort portfolios by

the number of quotes that were recorded in the previous calendar year, but we impose a

maximum on the number of issuers in each portfolio. This way we ensure that we have on

the one hand a proper sort, and on the other hand also have enough different contracts

in the most liquid portfolio. All issuers that were not traded during the previous year

are put in a separate portfolio called ’New’.

As for the market averages, for almost all portfolios, levels and volatility of both

CDS spreads and bid-ask spreads were rather high during the first part of the sample

(even increasing at the burst of the ICT bubble and the attacks of 9/11). Then some-

where halfway, around the introduction of the standardized ISDA contract, levels and

volatility of CDS spreads and their bid-ask spreads decreased. Later on, we see for some

portfolios a temporary peak around the Ford/GM downgrade that is relatively quickly

reversed. Note that our market average spreads seem to stabilize after 2004, whereas

market participants generally indicate that CDS spreads have only gone down ever since.

However, one needs to realize that the number of high yields in our sample has increased

from 10% in 2004 to 23% in 2006. For most rating portfolios, spreads indeed go down

between 2004 and 2006.

6 Empirical Results

As mentioned before, we estimate the risk premia using a two-stage regression approach

as in Black et al. (1972). We observe that the market became much less volatile in

the second half of the sample and that the average spread level decreased substantially

around the mid-point of the sample. The introduction of a standardized contract for

CDSs early 2003 may be one of the factors driving this behavior. Therefore, we also split
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the sample in two at the mid-point of our sample period (July 1st 2003) and present the

results for both sub-samples.

6.1 First stage regression results

We estimate equations (20) and (21). For both the excess return and the liquidity first

stage regression equations, we initially include only the market CDS excess returns as a

factor as predicted by our theoretical model8. In this case, only the return-market betas

βrR are significant.

Turning to the full specification, we find generally that the return-market betas βrR

and the cost-cost betas βcC are statistically significant, while the other betas (βrC and

βcR) are almost always insignificant. We therefore set βrC = 0 and βcR = 0 for all

portfolios in the rest of the analysis.

Results for the first stage excess return and liquidity regressions of the different

portfolio splits can be found in Tables 1 and 2. Each table displays the estimation

results of the full sample and the two sub-samples each spanning half the sample period.

To avoid outliers driving the regressions, we excluded the top and bottom 1% of every

(sub-)sample9. The results for the rating portfolios have in general the most explanatory

power. We see as expected that almost all excess returns load up positively on the CDS

market excess returns, which is evidence for a common credit risk factor in CDS returns.

This is in line with existing evidence of common factors in credit spreads (Driessen

(2005) and Lando and Feldhütter (2005)). We also see that low-rated portfolios have

more exposure to this credit factor than high-rated portfolios, which is intuitive and also

in line with existing work on corporate bonds. In the BAS equations, we mainly see

positive significant loadings on liquidity risk especially for the lower rating categories,

giving a pronounced source of liquidity risk.

For the liquidity sorted portfolios, constructed by sorting on the number of quotes per

contract, the picture is similar. The fact that the liquidity innovation of most portfolios

loads significantly on the market-wide liquidity factor provides evidence for the existence

8We also estimated a specification where we added equity market returns orthogonal to CDS market

returns, but betas on this factor were insignificant.
9We also investigated the effects of this filter; in general the results are quite robust to the inclusion

of outliers. However, for some less homogeneous portfolios like the ’New’ portfolio of the liquidity split,

the inclusion of outliers did fundamentally change the results.
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of a systematic liquidity risk factor. For the equity market, existing work has provided

evidence for systematic liquidity risk (for example, Chordia, Roll and Subrahmanyam

(2000)). The excess portfolio returns tend to load up on CDS market excess returns with

a beta that is decreasing as liquidity increases, whereas the portfolio BAS changes tend

to load up on the market BAS innovations. We see that liquidity betas are higher for

low liquidity than for high liquidity portfolios. The same we see for expected liquidity

in Figure 5; liquid portfolios have lower expected liquidity costs than illiquid portfolios.

This shows that there is a relation between our two measures of liquidity, the bid-ask

spread and the number of quotes per contract.

The industry portfolios tend to be the most noisy ones. This we see for example in

the loadings on the CDS market factor. These are almost all positive and most often

(border) line significant, but the point estimates of the betas differ widely from sample

to sample. For the industry portfolios, the only driver in the BAS equations is again the

market BAS factor.

6.2 Second stage regression results

We pool the different portfolio splits to increase the number of observations. We esti-

mate several versions of the asset pricing model. First, we estimate the model without

expected liquidity and with unrestricted risk premia. Next, we add expected liquidity

while leaving the risk premia unrestricted. Finally, we estimate the model with and

without expected liquidity in which we restrict the systematic credit risk premium (the

’return-return’ premium) to be the average expected excess market return over the sam-

ple under investigation. The restriction on the market beta coefficient is due to the

critique on asset pricing models by Lewellen and Nagel (2006) and Lewellen, Nagel and

Shanken (2006). Moreover, it mitigates any collinearity between CDS market betas and

liquidity betas and/or expected liquidity. Also, restricting that the market risk premium

is equal to the expected CDS market return is likely to render a conservative estimate

of the liquidity (risk) premium. Since we find that part of the expected CDS return is

due to liquidity in the unrestricted regressions, imposing that the market risk premium

captures the full expected CDS return will lead to a smaller role for liquidity effects.

The second stage regression results can be found in Table 7. We see that for the

whole sample, the portfolio expected excess returns load significantly on the market beta

and also on βcC . In the conservative case where we fix the CDS market risk premium
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at its average level over the sample, the premium on liquidity risk becomes only slightly

smaller. When we add expected liquidity to the specification, we see that it is priced

(positive) and that the risk premium for liquidity risk changes sign.

For sub-sample 1, the results are similar to those of the complete sample, except

for the fact that liquidity risk becomes insignificant once expected liquidity is included.

Moreover, the risk premia are somewhat larger in size, whereas the premia on expected

liquidity are smaller in size. For sub-sample 2 the result is slightly different. First,

liquidity risk seems to play a role even beyond expected liquidity, when the risk premium

on market wide default risk is not restricted. In view of the severe decline in risk premium

of market wide default risk, this is likely to be caused by collinearity between expected

liquidity and liquidity risk (see also our discussion below). Even in the conservative case

where we restrict the market risk premium on market wide default risk again, we see the

same pattern as in the full sample. With respect to the size of the coefficients, we see a

higher premium on expected liquidity and lower risk premia on credit and liquidity risk.

Since there is a cross-sectional correlation of about 75% between the expected liq-

uidity and βcC , the fact that the risk premium on βcC shows up significant in some cases

can be due to collinearity. Indeed, once we orthogonalize liquidity risk with respect to

expected liquidity, its risk premium becomes insignificant for both sub-samples but stays

significantly negative for the full sample. However, the economic impact of liquidity risk

is quite small. This can be seen from the last column of Table 7, where we present the

root mean squared pricing error (RMSE) of the second stage regression. We see that

the addition of liquidity risk only marginally lowers the RMSE. We do however, see

a large decrease in RMSE once we add expected liquidity to our pricing model. This

effect seems to be robust for all sub-samples. In view of this evidence and since our two

sub-samples are much more homogeneous than the full sample, we conclude that there

is little evidence that exposure to liquidity risk (as captured by βcC) is priced, in line

with the predictions from our theoretical model.

To check that the strong effect of expected liquidity on CDS returns is not driven

by outliers, we draw a scatterplot with expected liquidity on the x-axis and expected

excess returns on the y-axis in Figure 6 (for the full sample). We see a strong positive

upward sloping pattern, not driven by any outliers. Even if we report on the y-axis the

expected CDS return in excess of the return predicted by a one-factor model with the

CDS market as factor, a clear and stable positive relation between expected liquidity

and expected excess CDS returns is found (Figure 7).
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Figure 9 shows the economic significance and the fit of the model. This graph

presents the fitted expected excess returns (area graph) as well as the ’empirical’ expected

excess returns (bars) for the full sample. The lower part of the area graph shows the

risk premium due to systematic credit risk, whereas the upper part shows the premium

due to expected liquidity. These graphs illustrate that first the model fit is rather good

since the fitted values track the empirical values rather well. Moreover, the economic

significance is also substantial; expected liquidity accounts for 42% of the fitted expected

excess return. This percentage however is higher than the percentage of spreads since

spreads also include an expected loss component.10

7 Conclusion

We introduce an asset pricing model for CDS contracts which includes credit risk and

liquidity risk premia. In contrast to positive net-supply markets, the sign of liquidity

effects on CDS contracts is not clear a priori. We develop a theoretical asset pricing

model for derivatives with heterogeneous investors, and derive a linear asset pricing

equation for the expected return on a derivative asset, similar to Acharya and Pedersen

(2005).

We test this model using more than 300.000 CDS bid and ask quotes over a 2000 to

2006 sample period, and apply a repeated sales methodology to construct CDS spreads

and bid-ask spreads at a portfolio level. Empirically, we show that liquidity cannot sim-

ply be assumed away when considering CDS spreads. We find evidence for a systematic

liquidity factor in the CDS market, which affects the liquidity of CDS portfolios based

on industry, rating and liquidity sorts. Expected liquidity also affects expected CDS re-

turns, with a liquidity premium for the protection seller. Liquidity risk however, seems

not to be priced, which is in line with the predictions from our theoretical model.

10Our results here are opposite to what Chen et al. (2005) find. From an unreported analysis of

summary statistics over different sample periods, we conclude that their findings are very likely to be

driven by the short sample period they consider.
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Appendices

A Taylor approximation

The aim is to find the inverse of X = Vr − δi(C + C ′) + Vc. Now let c = σc̄ with σ a

scalar. Then we can write

X(σ) = Vr − σδi(C̄ + C̄ ′2Vc̄

Then take a first order Taylor expansion of X(σ)−1 around σ = 0. This is

X(σ)−1 ≈ X(0)−1 +
dX(σ)−1

dσ |σ=0
σ

and use from Amemiya (p.461, expression 21.(iv))

dX(σ)−1

dσ
= −X(σ)−1dX(σ)

dσ
X(σ)−1

with
dX(σ)

dσ
= −δi(C̄ + C̄ ′) + 2σVc̄

Now X(0) = V −1
r and

dX(σ)

dσ |σ=0
= −δi(C̄ + C̄ ′)

Notice that Var(c) is of order σ2 and therefore vanishes in the first order Taylor expan-

sion. Substituting all these expressions, we find

X(σ)−1 ≈ V −1
r + V −1

r

[
δi(C̄ + C̄ ′)

]
V −1

r σ = V −1
r + δiV

−1
r (C + C ′)V −1

r

In summary, we find

[Vr − δi(C + C ′) + Vc]
−1 ≈ V −1

r + δiV
−1
r (C + C ′)V −1

r

which is the expression used in equation (12).

B The repeated sales method in practice

This appendix discusses how we deal with missing observations and sampling frequency

for the repeated sales method (section 7). When creating the different portfolios using

the repeated sales method, we found that for the market as a whole, when ignoring
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bid-ask spread effects we were able to estimate market spread innovations on a daily

basis. When we tried to estimate the bid-ask spread on a daily basis, we did not achieve

full identification, since on some days, the quotes were too sparse (for example only bids

or only asks). However, when bid-ask spreads were constrained to be piecewise constant

per week, we achieved full identification.

At the portfolio level, we also restrict the bid-ask spread to be constant within a

week. Then, for some days we failed to achieve identification of the spread innovations

and for some weeks the per week constant bid-ask spread. Moreover, in weeks were

quotes were relatively sparse, it happened occasionally that column of δ(wi), the delta

of week i was a linear combination of the columns xj where j ∈ wi. This led to a

singular data matrix. To solve these problems, we dropped all days on which we did not

have any quotes. Moreover, for every week, we tried to solve the system Az = δ(wi),

where A consists out of all columns xj such that j ∈ wi. If this system could be solved,

we had a singularity and therefore we dropped the δ(wi) column. Naturally, we kept

track of which days and weeks were dropped, because now some spread innovations were

estimated over a period of two days rather than one. With these modifications, we were

able to estimate the spread innovations and bid-ask spreads of all but the most sparse

portfolios that we constructed. Our spread innovation estimates however turned out

to be somewhat noisy since they had been estimated on a daily basis. Therefore, we

aggregated them to a weekly basis. This also allowed us to mitigate the effect of spread

innovations estimated over multiple days.

C Derivation Shanken Correction

In our second step regression, we have:

E(Re,CDS) = ζE(liq) + βλ (37)

E(Re,CDS) = ζliq + βλ + η (38)

= ζliq + β̂λ + (β − β̂)λ + η (39)

E(ηη′) = Ω (40)
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where a bar denotes the sample average, η is a vector of pricing errors and the β̂is are

the (OLS) estimates of the regression equation 11

yi = Xβi + νi (41)

where

yi =




Re,CDS
i,1

Re,CDS
i,2
...

Re,CDS
i,T

∆liqi,1

∆liqi,2

...

∆liqi,T




X =




Re,CDS
m,1 0

Re,CDS
m,2 0
...

...

Re,CDS
m,T 0

0 ∆liqm,1

0 ∆liqm,2

...
...

0 ∆liqm,T




νi =




εi,1

εi,2

...

εi,T

υi,1

υi,2

...

υi,T




(42)

Since we use the beta estimates from the first stage as explanatory variables in the

second stage, we have an error-in-variables problem. To calculate standard errors of our

risk premia, we have to take this into account and therefore need to calculate

E(((β − β̂)λ + η)((β − β̂)λ + η)′) =

Ω + E((β − β̂)λλ′(β − β̂)′) + E((β − β̂)λη′) + E(ηλ′(β − β̂)′) (43)

Now we realize that for every portfolio i

(β̂i − βi) = (X ′X)−1X ′νi (44)

So that we have

(β̂ − β) =




(β̂i − β1)
′

(β̂i − β2)
′

...

(β̂i − βn)′




=




ν ′1X(X ′X)−1

ν ′2X(X ′X)−1

...

ν ′nX(X ′X)−1




(45)

And thus, element i, j of E
(
(β − β̂)λλ′(β − β̂)′

)
matrices should look like

E
(
(β − β̂)λλ′(β − β̂)′

)
i,j

= E(ν ′iX(X ′X)−1λλ′(X ′X)−1X ′νj) (46)

= E(λ′(X ′X)−1X ′νiν
′
jX(X ′X)−1λ) (47)

11Since only βretret and βliqliq are significant.
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since λ′(X ′X)−1X ′νi is a scalar. Thus, we can obtain E
(
(β − β̂)λλ′(β − β̂)′

)
by

E
(
(β − β̂)λλ′(β − β̂)′

)
= (λ′(X ′X)−1 ⊗ IN)B(IN ⊗ (X ′X)−1λ′) (48)

where Bij = E(X ′νiν
′
jX) and is calculated by the Newey-West procedure. The calcula-

tion of the covariance matrices E((β − β̂)λη′) and E(ηλ′(β − β̂)′) goes analogous.

The standard errors of the regression estimates are then given by the square roots of the

diagonal elements of:

σ2
est = (Z ′Z)−1Z ′E(((β − β̂)λ + η)((β − β̂)λ + η)′)Z(Z ′Z)−1 (49)

Z =
[

liq β̂
]

(50)
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Figure 1: Number of quotes per month

Figure 2: Number of quotes per industry and S&P rating category
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Figure 3: Weekly median bid and offer quotes averaged over issuers
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Figure 4: Weekly median bid-offer spread averaged over issuers
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Figure 5: Expected liquidity per portfolio

The figure displays the expected liquidity cost per portfolio for the full sample period. Liquidity

costs are measured as half the quoted portfolio bid-ask spread (in bp) generated by the repeated

sales procedure.

30



Figure 6: Scatterplot of expected liquidity and expected excess returns

The figure displays a scatterplot of expected excess returns to expected liquidity costs over the

full sample period. Liquidity costs are measured as half the quoted portfolio bid-ask spread

(in bp) generated by the repeated sales procedure. Expected excess returns are measured as

five year cumulative excess return per dollar of underlying.
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Figure 7: Scatterplot of expected liquidity and expected excess return residuals

The figure displays a scatterplot of portfolio expected excess returns minus portfolio betas times

average excess return on market portfolio to expected liquidity costs over the full sample period.

Liquidity costs are measured as half the quoted portfolio bid-ask spread (in bp) generated by

the repeated sales procedure. Expected excess returns are measured as five year cumulative

excess return per dollar of underlying.
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Figure 8: Fitted Expected Excess Returns with Liquidity Risk

The figure displays observed and fitted expected excess returns, split up by credit risk and

liquidity risk contribution for the full sample period. Expected excess returns are measured as

five year cumulative excess return per dollar of underlying.
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Figure 9: Fitted Expected Excess Returns with Expected Liquidity

The figure displays observed and fitted expected excess returns, split up by credit risk and ex-

pected liquidity contribution for the full sample period. Expected excess returns are measured

as five year cumulative excess return per dollar of underlying.
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Return Equation

Full Sample

Portfolio βretret t-value R2

NR 0.6562∗∗∗ 6.40 11.89 %

AAA-AA- 0.0678∗∗ 1.99 1.35 %

A+ 0.1715∗∗∗ 4.07 5.32 %

A 0.239∗∗∗ 5.14 8.02 %

A- 0.1436∗ 1.82 1.16 %

BBB+ 0.4904∗∗∗ 7.18 14.53 %

BBB 0.6069∗∗∗ 7.18 14.70 %

BBB- 0.5594∗∗∗ 4.62 6.70 %

HY 2.0855∗∗∗ 7.00 15.15 %

Sub-sample 1

Portfolio βretret t-value R2

NR 0.5589∗∗∗ 3.51 7.58 %

AAA-AA- 0.0556 0.88 0.56 %

A+ 0.1889∗∗∗ 3.38 7.27 %

A 0.2213∗∗∗ 3.41 7.29 %

A- 0.22∗ 1.64 1.96 %

BBB+ 0.5709∗∗∗ 4.94 14.18 %

BBB 0.6834∗∗∗ 5.03 14.57 %

BBB- 0.6035∗∗∗ 3.09 6.23 %

HY 2.4193∗∗∗ 4.51 14.59 %

Sub-sample 2

Portfolio βretret t-value R2

NR 0.7563∗∗∗ 6.56 22.17 %

AAA-AA- 0.1168∗∗∗ 3.25 6.56 %

A+ 0.1255∗ 1.80 2.16 %

A 0.2652∗∗∗ 4.12 10.02 %

A- 0.0636 1.02 0.70 %

BBB+ 0.1526∗∗ 2.47 3.85 %

BBB 0.4794∗∗∗ 7.66 28.19 %

BBB- 0.6065∗∗∗ 6.68 22.88 %

HY 1.8181∗∗∗ 7.47 26.79 %

Table 1: First stage excess return regressions of rating portfolios

This table reports the βretrets and R2s of the excess return regression Re,CDS
i,t = as,i + βretret,iR

e,CDS
m,t + εi, t of rating

portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June 2006.
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Return Equation

Full Sample

Portfolio βretret t-value R2

NR 0.5841∗∗∗ 5.16 8.24 %

AAA-AA- 0.0032 0.07 0.00 %

A+ 0.0713 1.24 0.56 %

A 0.1294∗∗∗ 2.93 2.79 %

A- 0.1389 1.48 0.83 %

BBB+ 0.2248∗∗ 2.45 2.01 %

BBB 0.9477∗∗∗ 7.98 18.41 %

BBB- 0.8764∗∗∗ 5.61 9.96 %

HY 1.774∗∗∗ 5.83 12.47 %

Sub-sample 1

Portfolio βretret t-value R2

NR 0.6108∗∗∗ 3.64 8.41 %

AAA-AA- 0.0241 0.37 0.11 %

A+ 0.1345∗ 1.66 1.98 %

A 0.1462∗∗ 2.49 4.05 %

A- 0.1532 1.00 0.88 %

BBB+ 0.2533 1.54 1.69 %

BBB 1.1306∗∗∗ 5.43 17.92 %

BBB- 0.8737∗∗∗ 3.29 7.46 %

HY 1.7613∗∗∗ 2.76 7.51 %

Sub-sample 1

Portfolio βretret t-value R2

NR 0.982∗∗∗ 6.76 23.44 %

AAA-AA- 0.023 0.35 0.08 %

A+ 0.1165 1.16 0.94 %

A -0.0288 -0.36 0.08 %

A- 0.0813 0.83 0.46 %

BBB+ 0.1009 1.12 0.82 %

BBB 0.4539∗∗∗ 5.22 15.70 %

BBB- 0.5986∗∗∗ 3.79 8.80 %

HY 2.2108∗∗∗ 6.07 20.38 %

Table 2: First stage liquidity regressions of rating portfolios

This table reports the βretrets and R2s of the liquidity innovation regression ∆liqi,t = al,i + βliqliq,i∆liqm,t + υi, t of

rating portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June

2006.

36



Return Equation

Full Sample

Portfolio βretret t-value R2

Least liq 0.6073∗∗∗ 6.00 11.75 %

liq5 0.657∗∗∗ 8.20 19.67 %

liq4 0.5769∗∗∗ 6.10 12.28 %

liq3 0.6535∗∗∗ 7.22 16.03 %

liq2 0.2951∗∗∗ 3.67 4.69 %

most liq 0.3834∗∗∗ 7.22 15.93 %

New 0.7864∗∗∗ 7.57 17.39 %

Sub-sample 1

Portfolio βretret t-value R2

Least liq 0.644∗∗∗1 4.17 12.39 %

liq5 0.5896∗∗∗ 3.17 7.46 %

liq4 0.7312∗∗∗ 4.72 15.76 %

liq3 0.6654∗∗∗ 4.67 14.94 %

liq2 0.3636∗∗∗ 2.72 5.58 %

most liq 0.4531∗∗∗ 5.16 17.8 %

New 0.857∗∗∗ 6.31 24.48 %

Sub-sample 1

Portfolio βretret t-value R2

Least liq 0.8511∗∗∗ 6.78 23.95 %

liq5 0.5213∗∗∗ 6.80 23.71 %

liq4 0.3834∗∗∗ 3.16 6.38 %

liq3 0.5245∗∗∗ 4.22 10.71 %

liq2 0.2851∗∗∗ 3.87 9.29 %

most liq 0.2766∗∗∗ 3.81 8.76 %

New 0.6445∗∗∗ 3.83 8.99 %

Table 3: First stage excess return regressions of liquidity portfolios

This table reports the βretrets and R2s of the excess return regression Re,CDS
i,t = as,i +βretret,iR

e,CDS
m,t + εi, t of liquidity

portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June 2006.
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Return Equation

Full Sample

Portfolio βretret t-value R2

Least liq 0.7659∗∗∗ 4.44 6.88 %

liq5 0.9173∗∗∗ 6.37 13.09 %

liq4 0.6796∗∗∗ 4.79 7.85 %

liq3 0.4926∗∗∗ 4.86 7.98 %

liq2 0.5585∗∗∗ 5.38 9.58 %

most liq 0.1785∗∗∗ 3.08 3.33 %

New 0.9456∗∗∗ 7.46 16.92 %

Sub-sample 1

Portfolio βretret t-value R2

Least liq 0.626∗∗∗ 2.28 4.27 %

liq5 1.0133∗∗∗ 3.67 10.15 %

liq4 0.772∗∗∗ 3.12 7.58 %

liq3 0.4883∗∗∗ 3.31 8.17 %

liq2 0.5751∗∗∗ 2.64 5.49 %

most liq 0.2062∗ 1.93 2.97 %

New 0.9078∗∗∗ 4.90 15.98 %

Sub-sample 1

Portfolio βretret t-value R2

Least liq 1.1399∗∗∗ 6.44 21.78 %

liq5 0.5129∗∗∗ 3.60 8.01 %

liq4 0.826∗∗∗ 5.26 15.65 %

liq3 0.3461∗∗ 2.09 2.83 %

liq2 0.2003∗∗∗ 3.30 6.69 %

most liq 0.1697∗∗∗ 2.63 4.35 %

New 1.1438∗∗∗ 5.28 16.04 %

Table 4: First stage liquidity regressions of liquidity portfolios

This table reports the βretrets and R2s of the liquidity innovation regression ∆liqi,t = al,i + βliqliq,i∆liqm,t + υi, t of

liquidity portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June

2006.
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Return Equation

Full Sample

Portfolio βretret t-value R2

Oil and Gas 0.256 1.27 0.81 %

Basic Materials 0.764∗∗ 2.04 2.11 %

Industrials 0.4155∗∗ 2.37 2.4 %

Consumer Goods 0.9853∗∗∗ 11.27 29.39 %

Health Care 0.2822∗∗∗ 2.60 2.29 %

Consumer services 0.6907∗∗∗ 6.86 13.43 %

Telecommunications 0.9118∗∗∗ 6.36 12.08 %

Utilities 1.2977∗∗∗ 6.06 13.62 %

Financials 0.2871∗∗∗ 3.29 3.65 %

Technology 0.7688∗∗∗ 4.08 5.93 %

Sub-sample 1

Portfolio βretret t-value R2

Oil and Gas 0.2637 0.92 0.88 %

Basic Materials 0.9472∗ 1.87 3.26 %

Industrials 0.4903∗ 1.88 2.65 %

Consumer Goods 0.9931∗∗∗ 8.63 33.15 %

Health Care 0.1199 0.57 0.24 %

Consumer services 0.6488∗∗∗ 4.30 10.96 %

Telecommunications 0.841∗∗∗ 3.73 8.85 %

Utilities 1.3075∗∗∗ 3.96 11.46 %

Financials 0.3539∗∗∗ 4.07 9.91 %

Technology 1.1029∗∗∗ 4.08 11.35 %

Sub-sample 1

Portfolio βretret t-value R2

Oil and Gas 0.2244 0.77 0.58 %

Basic Materials 0.7758 1.27 1.81 %

Industrials 0.5342 1.59 2.46 %

Consumer Goods 0.9168∗∗∗ 5.85 18.33 %

Health Care 0.3835∗∗∗ 4.17 10.22 %

Consumer services 0.5939∗∗∗ 5.01 14.26 %

Telecommunications 0.5548∗∗∗ 4.59 12.34 %

Utilities 1.1675∗∗∗ 5.28 19.78 %

Financials -0.1653 -0.53 0.2 %

Technology 1.0534∗∗∗ 2.92 5.92 %

Table 5: First stage excess return regressions of industry portfolios

This table reports the βretrets and R2s of the excess return regression Re,CDS
i,t = as,i +βretret,iR

e,CDS
m,t + εi, t of industry

portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June 2006.
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Return Equation

Full Sample

Portfolio βretret t-value R2

Oil and Gas 1.3325∗∗∗ 4.57 13.05 %

Basic Materials 1.7217 1.55 2.4 %

Industrials 0.7641∗∗∗ 3.37 6.23 %

Consumer Goods 0.9989∗∗∗ 9.93 24.62 %

Health Care 0.7991∗∗∗ 5.73 11.16 %

Consumer services 1.287∗∗∗ 8.83 21 %

Telecommunications 0.4185∗∗∗ 2.64 2.43 %

Utilities 1.2331∗∗∗ 3.52 6.27 %

Financials 0.2071∗∗∗ 3.03 3.32 %

Technology 0.491 1.62 1.14 %

Sub-sample 1

Portfolio βretret t-value R2

Oil and Gas 1.9151∗∗∗ 3.47 17.94 %

Basic Materials 1.2232 0.95 1.42 %

Industrials 0.7819∗∗∗ 2.74 6.92 %

Consumer Goods 0.9809∗∗∗ 8.98 34.96 %

Health Care 0.9244∗∗∗ 3.72 10.93 %

Consumer services 1.8134∗∗∗ 8.17 31.8 %

Telecommunications 0.5605∗∗ 2.16 3.38 %

Utilities 1.0628∗ 1.82 3.61 %

Financials 0.2404∗∗∗ 3.34 7.04 %

Technology 0.1368 0.38 0.15 %

Sub-sample 1

Portfolio βretret t-value R2

Oil and Gas 0.1193 0.66 0.53 %

Basic Materials 1.1693 0.40 0.47 %

Industrials 0.617 1.39 2.72 %

Consumer Goods 0.9292∗∗∗ 3.77 8.72 %

Health Care 0.4131∗∗∗ 3.27 6.83 %

Consumer services 0.3867∗∗∗ 2.97 5.57 %

Telecommunications 0.2046 1.53 1.59 %

Utilities -0.1406 -0.39 0.15 %

Financials -0.1319 -0.59 0.29 %

Technology 1.4163∗∗∗ 2.67 5.39 %

Table 6: First stage liquidity regressions of industry portfolios

This table reports the βretrets and R2s of the liquidity innovation regression ∆liqi,t = al,i + βliqliq,i∆liqm,t + υi, t of

industry portfolios for the whole sample period and the two sub-samples July 2000 to June 2003 and July 2003 to June

2006.
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Table 7: Second stage regressions pooled portfolios

Full Sample

No restriction on market risk premium

λretret t-value λliqliq t-value ζ t-value RMSE

0.0771∗∗∗ 10.4612 0.0184

0.0218∗∗∗ 5.8586 25.0643∗∗∗ 8.5803 0.0083

0.0527∗∗∗ 9.3642 0.023∗∗∗ 7.7966 0.0162

0.0238∗∗∗ 6.2066 -0.0095∗∗∗ -3.0742 28.7007∗∗∗ 7.9279 0.0079

Restricted market risk premium

0.0537∗∗∗ 10.1481 0.0288

0.0537∗∗∗ 10.1481 12.6355∗∗∗ 3.9122 0.0121

0.0537∗∗∗ 10.1481 0.0222∗∗∗ 3.6954 0.0162

0.0537∗∗∗ 10.1481 -0.015∗∗∗ -5.0506 19.6525∗∗∗ 4.9824 0.0113

Sub-Sample 1

No restriction on market risk premium

λretret t-value λliqliq t-value ζ t-value RMSE

0.0919∗∗∗ 14.1755 0.0279

0.0197∗∗∗ 4.3060 24.23∗∗∗ 15.0578 0.0093

0.061∗∗∗ 10.1809 0.0332∗∗∗ 18.2365 0.0220

0.0196∗∗∗ 4.3105 -0.0008 -0.3166 24.5001∗∗∗ 11.0099 0.0093

Restricted market risk premium

0.07∗∗∗ 12.0426 0.0330

0.07∗∗∗ 12.0426 10.2378∗∗∗ 5.0988 0.0191

0.07∗∗∗ 12.0426 0.0267∗∗∗ 5.3850 0.0223

0.07∗∗∗ 12.0426 -0.0002 -0.0715 10.2989∗∗∗ 3.9424 0.0191
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Table 7 continued

Sub-Sample 2

No restriction on market risk premium

λretret t-value λliqliq t-value ζ t-value RMSE

0.0569∗∗∗ 19.7538 0.0152

0.0168∗∗∗ 7.5144 31.5899∗∗∗ 23.1379 0.0089

0.0447∗∗∗ 13.0899 0.023∗∗∗ 8.7862 0.0146

0.0145∗∗∗ 5.6160 -0.0095∗∗ 1.9912 30.9064∗∗∗ 19.8985 0.0088

Restricted market risk premium

0.0376∗∗∗ 19.3728 0.0198

0.0376∗∗∗ 19.3728 18.0536∗∗∗ 8.8785 0.0106

0.0376∗∗∗ 19.3728 0.0222∗∗∗ 7.8822 0.0148

0.0376∗∗∗ 19.3728 -0.015∗∗∗ -4.1195 21.9917∗∗∗ 10.4558 0.0104

1This table presents the estimated risk premia and t-values for the different specifications of the

second stage regression

E(Re,CDS
k ) = ζE(liqk,t) + λretretβretret,k + λliqliqβliqliq,k + ek,

for the pool of rating, liquidity and industry portfolios. Moreover, it gives the root mean squared pricing

errors (RMSE) for every specification. The excess returns are calculated over a five-year holding period,

as in equation 24
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